
International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

35

Network Issues in Clock Synchronization on Distributed Database

Rumpa Hazra1, Debnath Bhattacharyya1, Shouvik Dey2, Sattarova Feruza Y.3,
and Tadjibayev Furkhat A.4

1Heritage Institute of Technology, Kolkata-700107, India

2IBM India Pvt. Ltd., Kolkata, India
send2shouvik@gmail.com

3Hannam University, Daejeon, Korea
4Lindenwood University, St. Charles, MO, USA

{send2rumpa,debnathb}@gmail.com1, {mymail6585, furkhat}@gmail.com3,4

Abstract

Synchronization of clocks in distributed system has been an important area of research
over the last decade. There are various methods of achieving clock synchronization
depending on the requirements of the situation. A clock synchronization service ensures that
spatially dispersed and heterogeneous processors in a distributed system share a common
notion of time. In order to behave as a single, unified computing resource, distributed systems
have need for a synchronization of drifting clocks and several algorithms have been proposed
on this topic. Our paper highlights total network connection between different processors
(alias nodes) of the system,

We provide a simple, efficient, and unified algorithm for clock synchronization that can
minimize the total network connection of the system.

Keywords: Database, clock, distributed, operating system.

1. Introduction

A distributed system consists of a set of processors that communicate by message
transmission and that do not have access to a central clock. Nonetheless, it is frequently
necessary for the processors to obtain some common notion of time, where “time" can mean
either an approximation to real time or simply an integer-valued counter. The technique that
is used to coordinate the notion of time is known as clock synchronization.

Synchronized clocks are useful for many reasons. Often a distributed system is designed to
realize some synchronized behavior, especially in real-time processing in factories, aircraft,
space vehicles, and military applications. If clocks are synchronized, algorithms can proceed
in “rounds" and algorithms that are designed for a synchronous system can be employed.
Synchronization of individual clocks also becomes the more important in the case of hard real
– time systems, where predictable performance is the foremost concern and one need to
preserve a total logical/temporal ordering of tasks in the system.

Each processor (alias node) in a distributed system has its own hardware clock. Physical
clocks normally drift due to temperature changes etc. For example, if 2 processor nodes have
hardware clocks having a stability of ±5 ppm (parts per million), they can drift by as much as
10 μs in one second of real time. Now let us consider the major problems that can arise, if the
clocks are not synchronized:

International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

36

a. In a distributed system, the sensor data acquisition, which is carried out in one
processor must always maintain a fixed timing relationship with the algorithms,
which process this sensor data. These algorithms may typically be performed in a
set of different processors. This fixed timing relationship can not be maintained
unless all clocks of the processors partitioning in the execution of the algorithm are
synchronized. Similar arguments hold good for the processors, which are entrusted
with the job of data distribution to the launch vehicle control system actuators.

b. There may exist a precedence relationship among tasks in different processors.

Say, task A in one processor can start execution only upon the completion of Task
B in another processor. Since the pre-run time scheduling algorithms [11], which
are commonly used to schedule tasks in different processors use the logical clocks
maintained by each individual processor, the only way to guarantee the precedence
relationship among tasks distributed across processors is to maintain a good clock
synchronization among processors.

Clock synchronization is achieved normally by two distinct methods, viz., external

synchronization and internal synchronization. External synchronization tries to maintain
processor clock within a specified deviation from an externally maintained time reference,
using phase locked oscillators [8]. For this purpose, each processor should be connected to a
stable clock through an external links, to provide nanosecond level accuracy to physical
clocks. One needs to execute one pass of a synchronization algorithm initially or whenever a
new processor joins in. But Cesium or Rubidium based stable automatic clocks are expensive
and to carry them on board satellite launch vehicles makes the overall cost prohibitive. These
issues are also highly relevant in the case of automotive industry where expensive hardware
clocks in each node may not be cost-effective. More over, in a distributed system, it may well
be near impossible to use external clocks, as the cables interconnecting these clocks introduce
distortions, which could be higher than the inherent stability of the external clock. Internal
clock synchronization addresses these problems by using software algorithms which ensures
that the logical clocks used by the processors in different nodes are consistent within limits,
irrespective of the drift in the physical clocks.

2. Previous works

Lamport and Melliar-Smith [5] have presented algorithms, which maintain clock
synchronization under the assumption that clocks are initially synchronized. In the Interactive
Convergence Algorithm a node sets its clock to the average of all clock values after
discarding bad clock values (those which lie farther than a specified value from its own
clock). The more complex Interactive Consistency Algorithms use median rather than mean,
and require a great deal of message passing among the participating nodes. These algorithms
achieve clock synchronization even under Byzantine faults and need 3m+1 processors and
m+1 round of message passing to handle up to m faults.

Koptez and Oshenreiter [4] have proposed the ‘Mars approach towards clock
synchronization.’ They use Fault-Tolerant Averaging (FTA) algorithm in which the highest as
well as lowest f clock values are discarded and the remaining clock values are averaged to
resynchronize. This method is able to tolerate up to f faulty clocks.

Christian [2] has suggested a clock synchronization algorithm, which is based on
probabilistic arguments. This measures the round trip delay by sending a clock read request to
a remote node. The remote clock value is then estimated based on this measured delay. This

International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

37

algorithm claims to guarantee smaller clock synchronization errors as compared to
deterministic algorithms.

Srikanth and Toueg [10] have presented a clock synchronization algorithm, which can
tolerate different types of failures including arbitrary ones. This algorithm is given in two
forms, viz., with and without message authentication. Synchronization is achieved by
periodically adjusting the logical clocks forward by executing this algorithm. Here the values
of the logical clocks can jump to a higher value and no logical clock value is moved
backwards, thus avoiding the repetition of same logical clock values. The algorithm is
optimal in the sense of accuracy as well as the number of faulty processors that can be
tolerated and is useful in many situations. A transputer based fault-tolerant implementation
and timing analysis of [9] is presented in Sinha et al [8].

Dhruba Basu and Sasikumar Punnekkat [12] have suggested two simple clock
synchronization algorithms, which can overcome some problems that arise out of the clock
synchronization algorithms of Srikanth and Toueg[10]. This algorithm is given in two forms,
viz., with and without fault. According to Srikanth and Toueg [9] no logical clock is ever
adjusted backwards to prevent the occurrence of the same clock value twice. The main
problem here is that logical clocks of slower processors are forced to jump forward. This
could result in unfinished or unscheduled tasks in some processors with a very high utilization
factor, which in turn could lead to unpredictable system behavior Srikanth and Toueg [10].
Lamport and Melliar-Smith [5] have briefly mentioned these problem in an earlier work.
According to Dhruba Basu and Sasikumar Punnekkat [12] Synchronization is achieved with
respect to the slowest among the correct clocks. This ensures that there is always a continuity
of logical clock values and there is no need to cause the logical clock to be moved either
forward or backward. This is an extremely important property for ensuring performance in
most of the safety critical hard real-time systems. This also guarantees that no task release
points are missed. The precedence constraints between tasks on different processors are
preserved automatically.

The major argument against synchronizing with the slowest clock could be that, it
necessitates logical clock of the processors with faster physical clocks to jump backwards,
thus repeating the same logical time values again. This problem can be solved, by modifying
processes, which manage the maintenance of logical clocks. Dhruba Basu and Sasikumar
Punnekkat [12] have presented algorithm-A, which can overcome the above problem under
the assumption of ‘no faults’. This algorithm works by stopping the ‘logical clock of a node
(as if processor is in a wait state), as soon as it reaches its Ready Point, i.e., equal to an
integral multiple of the clock synchronization interval (P).

3. Scope of works

This paper extends the work presented in [12] both on an algorithmic and on a theoretical
level. We modify the algorithm proposed by Dhruba Basu and Sasikumar Punnekkat [12] and
obtain better synchronization with less computation and less communication. In this paper,
we present a simple clock synchronization algorithm, which reduces total network
connections of the system mentioned in [12]. In this paper we synchronize the clocks with
respect to the slowest among the correct clock. This newly proposed algorithm also ensures
that there is always a continuity of logical clock values and there is no need to cause the
logical clocks to be moved either forward or backward. We have developed a simulator in
Java for the implementation of the proposed algorithm. We has also proposed two theorems
based on the algorithm.

International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

38

We consider a distributed system having n processors, which are referred to as nodes. Each
node is assumed to have its own hardware (physical) clock. Also, each of these nodes has a
logical clock, which is essentially a software counter.

We assume that each node has a logical clock process, which maintain a logical clock and
synchronizes it with the other logical clocks periodically. All other processes executing on a
particular node use this logical time obtained from the logical clock process of that node for
scheduling, synchronization etc. In the context of this paper, we use the terms, node and
logical clock process interchangeably.

As in most hard real-time systems, we assume that the tasks are periodic [2], where each
task is characterized by its period pi, release time ri, and deadline di [6], [11]. All of these
parameters are functions of the node’s logical clock value.

We represent the real time (global time) with lower case letters such as t, and the logical
time with upper case letters such as Ci(t) which represent the value of the ith logical clock
(i=1,..,n) at real time t. We assume the ability to initially synchronize the clocks. The logical
clocks are resynchronized periodically, and the resynchronization interval is represented by
P.

Let Ci
k-1(t) represent the logical clock value of the ith node at real-time t, after the (k-1)th

round of resynchronization has been performed. When Ci
k-1(t) reaches the value KP, then the

kth round of resynchronization commences.

4. Assumptions reading clocks

We make the following assumptions, similar to those given in [10], regarding clocks:
a. We assume a constant Dmax ≥0, which represents the maximum permitted

deviation of any correct logical clock from real time during a resynchronization
interval. This can be stated as |Ci

k-1(t)-t| ≤ Dmax . This means that, the difference
between logical clock values of the fastest and the slowest correct clocks can be
at most 2Dmax time units.

b. Rate of drift of correct or non-faulty physical clocks from real time is bounded by
a known constant, p>0, which in turn determines Dmax .

c. Clock drifts specified as ±x ppm are not considered but the actual clock drifts are
measured apriori. This apriori measured clock drifts can never exceed the
maximum drift i.e. ± x ppm.

The measured clock drifts do not change with time i.e. ignoring second order effects
i.e. drift of drift is NIL.

5. Definitions

5.1. Ready Point

Similar to Dhruba Basu and Sasikumar Punnekkat[12], each logical clock process (except
the slowest) stops logical clock incrementing process and put in ‘wait’ mode whenever its
logical clock value reaches an integral (say, kth) multiple of the resynchronization interval, P.
These time points are referred to as Ready Points and they are {KP |¥K=1,2,…}. The real
time corresponds to the Ready Point of the ith process during the kth round is denoted by
readyi

k.

5.2. Sequence of Synchronization

Different clocks may have different drift rates for which they drift apart from each other in
course of time. To synchronize the system a pair wise synchronization has been achieved

International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

39

between different drift rates of the clocks in the system. The sequence in which
synchronization is taking place between different pairs is called the Sequence of
Synchronization.

5.3. Reference Node

Different clocks may have different drift rates for which they drift apart from each other in
course of time. To synchronize the system a pair wise synchronization has been achieved
between different drift rates of the clocks in the system. For pair wise selection, each
execution of the algorithm must be with respect to the one common node. That node is
referred to as Reference Node.

.
6. Design methodology of our Algorithm

In this section, we present a simple clock synchronization algorithm, which reduces total
network connections of the system mentioned in [12]. The fundamental concept of our
proposed algorithm is to perform pair wise synchronizations. Slowest node forms a pair with
every node. Every pair is synchronized with respect to the slowest among the correct clocks.
This algorithm also ensures that there is always a continuity of logical clock values and there
is no need to cause the logical clocks to be moved either forward or backward. This
eliminates the problems associated with adjusting the clock backwards. This is an extremely
important property for ensuring performance in most of the safety critical hard real-time
systems. This also guarantees that no task release points are missed. The precedence
constraints between tasks on different processors are preserved automatically.

It may be noted that, theoretically it is possible to have more than one clock with exactly
the same drift rate, so that there is no unique clock, which is ‘the slowest’. However, this does
not have any impact on our algorithm, except that one should consider the term slowest clock
as either referring to the group of slowest clocks or to any one among them.

The major argument against synchronizing with the slowest clock could be that, it
necessitates logical clock of the processors with faster physical clocks to jump backwards,
thus repeating the same logical time values again. This problem can be solved, by modifying
processes, which manage the maintenance of logical clocks. We now present an algorithm,
which can overcome the above problem under the assumption of ‘no faults’.

The proposed algorithm works for pair wise nodes, by stopping the logical clock of the
node i (as if processor is in a wait state), as soon as it reaches its Ready Point= iKP, i.e., equal
to an integral multiple of the clock synchronization interval (P). This node i stay in wait state
until the slowest clock reaches Ready Point of that node, i.e., iKP value. In this algorithm, we
first synchronize the fastest first and the slowest last. Next synchronization is taken place
between the 2nd fastest and the slowest last and so on. When the synchronization between the
2nd slowest and the slowest last is completed, one cycle of synchronization is completed. In
the next cycle of synchronization same algorithm will be repeated, i.e., in the next cycle, first
synchronization is taken place between the fastest first and the slowest last. So the maximum
drift between the fastest and the slowest correct clocks will be bounded. Here Ci

k-1(t)
represents the logical clock value of the ith node (except the slowest) at real-time t, after the
(k-1)th round of resynchronization has been performed and Cn

k-1(t) represents the logical clock
value of the slowest node at real-time t, after the (k-1)th round of resynchronization has been
performed It may be noted that there exist a separate process for incrementing the logical
clock.

The following algorithm needs to be executed by every clock process i (except the
slowest), during kth round of resynchronization.

International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

40

6.1. Proposed Algorithm

begin
 for i=1 to n-1 do

 if Ci
k-1(t)= iKP then // kth Ready Point has reached

 Suspend logical clock incrementing process

 // stop logical clock incrementing process and put in ‘wait’ mode

 if Cn
k-1(t) ≠ iKP then wait till (Cn

k-1(t)= iKP)

 //wait till the slowest node reaches the Ready Point of clock process i

 Ci
k(t)= iKP and restart the logical clock incrementing process

 // kth round of resynchronization is completed for clock process i

 endif

 end for

end

This algorithm is simpler compared to the previous algorithm [12] and it is developed
without any requirement of [READY K] and [SYNC K] messages [12]. The logical clock do
not experience any jumps (either forward or backward). The logical time always changes in a
non-descending manner.

The observations given below follow directly from our definitions and are noteworthy:

a. In the previous algorithm, we get a fully connected system. No. of network
connection will be nC2 , i.e. n(n-1)/2 (where n is the no. of processors).
In the new algorithm, no. of network connection will be (n-1) (where n is the no.
of processors).So in the new algorithm, we can reduce the total no. of network
connection.
In the following diagram, we take n=5,so no. of network connection will be
(n-1)=4, which is represented by the no. of edges of the following diagram.

b. If clock synchronization interval will be 10,000, then according to Dhruba Basu
and Sasikumar Punnekkat[12] maximum drift would be 10 (between slowest and
fastest).
In new algorithm, this maximum drift is bounded but has higher value, i.e.,90.

c. Since the slowest clock is the reference clock we assume its drift to be zero and
drifts of all other clocks are measured with respect to this slowest clock.
Let these drifts be (ρ0, ρ1, ρ2, ρ 3,.., ρn-1) all in ppm. (Where ρ0=0.)

Figure 1. System with 5 processors having 4 network connections.

International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

41

If the periodicity of pair wise synchronization is Tpair, then at the time of first
synchronization (the fastest and the slowest) their clocks would be drifted by + ρn-1 ppm. And
the absolute maximum drift before the next synchronization between these pair would be (ρn-

1- ρ0) (n-1) T/106.

7. Case study

In this section, we take 10 clocks (i.e., processors) of different drift rates. We want to
synchronize these clocks according to our newly proposed algorithm.

Let us assume clock synchronization interval P to be 10,000, so that KP values (i.e., Ready
Points) are 10,000, 20,000, 30,000, and so on.

In a 10 processors system, let these drifts be +500, +400, +300, +200, +100, -100, -200,
-300, -400, -500 (all in ppm) shown in Table 1.

Table 1. 10 processors system with different drift values.

According to our proposed algorithm, slowest node forms a pair with every node. Every

pair is synchronized with respect to the slowest among the correct clocks. Here slowest node
is J and the fastest node is A. Pair is formed between the nodes A and J, B and J, C and J, and
D and J, E and J, F and J, G and J, H and J, I and J. In this algorithm, we first synchronize the
fastest first and the slowest last, i.e., between the nodes A and J .Next synchronization is
taken place between the 2nd fastest and the slowest, i.e., between the nodes B and J and so
on. One round is completed when the last pair I and J is synchronized.

1st synchronization is taken place between the nodes A and J at 10,000, by stopping the
clock of node A when its logical clock reaches its Ready Point= iKP, i.e., equal to an integral
multiple of the clock synchronization interval (P) (in this case iKP =10,000).The node A stays
at 10,000 until the node J reaches 10,000. So, A has to wait 10 time unit.

2nd synchronization is taken place between the nodes B and J at 20,000, by stopping the
clock of node B when its logical clock reaches its Ready Point= iKP, i.e., equal to an integral
multiple of the clock synchronization interval (P) (in this case iKP =20,000).The node B stays
at 20,000 until node J reaches 20,000. So, B has to wait 18 time unit.

3rd synchronization is taken place between the nodes C and J at 30,000, by stopping the
clock of node C when its logical clock reaches its Ready Point= iKP, i.e., equal to an integral

Node i Ci
k(t) when real time

t=10,000

A 10,000+5
B 10,000+4
C 10,000+3
D 10,000+2
E 10,000+1
F 10,000-1
G 10,000-2

H 10,000-3
I 10,000-4

J 10,000-5

International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

42

multiple of the clock synchronization interval (P) (in this case iKP =30,000).The node C stays
at 20,000 until node J reaches 30,000. So, C has to wait 24 time unit.

4th synchronization is taken place between the nodes D and J at 40,000, by stopping the
clock of node D when its logical clock reaches its Ready Point= iKP, i.e., equal to an integral
multiple of the clock synchronization interval (P) (in this case iKP =40,000).The node D stays
at 40,000 until node J reaches 40,000. So, D has to wait 28 time unit.

5th synchronization is taken place between the nodes E and J at 50,000, by stopping the
clock of node E when its logical clock reaches its Ready Point= iKP, i.e., equal to an integral
multiple of the clock synchronization interval (P) (in this case iKP =50,000).The node E stays
at 50,000 until node J reaches 50,000. So, E has to wait 30 time unit.

6th synchronization is taken place between the nodes F and J at 60,000, by stopping the
clock of node F when its logical clock reaches its Ready Point= iKP, i.e., equal to an integral
multiple of the clock synchronization interval (P) (in this case iKP =60,000).The node F stays
at 60,000 until node J reaches 60,000. So, F has to wait 24 time unit.

7th synchronization is taken place between the nodes G and J at 70,000, by stopping the
clock of node G when its logical clock reaches its Ready Point= iKP, i.e., equal to an integral
multiple of the clock synchronization interval (P) (in this case iKP =70,000).The node G stays
at 70,000 until node J reaches 70,000. So, G has to wait 21 time unit.

8th synchronization is taken place between the nodes H and J at 80,000, by stopping the
clock of node H when its logical clock reaches its Ready Point= iKP, i.e., equal to an integral
multiple of the clock synchronization interval (P) (in this case iKP =80,000).The node H stays
at 80,000 until node J reaches 80,000. So, H has to wait 16 time unit.

9th synchronization is taken place between the nodes I and J at 90,000, by stopping the
clock of node I when its logical clock reaches its Ready Point= iKP, i.e., equal to an integral
multiple of the clock synchronization interval (P) (in this case iKP =90,000).The node I stays
at 90,000 until node J reaches 90,000. So, I has to wait 9 time unit.

To prove the maximum drift (i.e., the drift between the slowest and the fastest) is bounded
after the completion of each round, we found out the distance between the fastest node (A)
and the slowest node (J) when the pair (I,J) is synchronized.

a. Pair (H,J) is synchronized 10,000 time unit before the synchronization of pair (I,J).

After 10,000 drift between the H and J is 2*1=2.
b. Pair (G,J) is synchronized 20,000 time unit before the synchronization of pair (I,J).

After 20,000 drift between the G and J is 3*2=6.
c. Pair (F,J) is synchronized 30,000 time unit before the synchronization of pair (I,J).

After 30,000 drift between the F and J is 4*3=12.
d. Pair (E,J) is synchronized 40,000 time unit before the synchronization of pair (I,J).

After 40,000 drift between the E and J is 6*4=24.
e. Pair (D,J) is synchronized 50,000 time unit before the synchronization of pair (I,J).

After 50,000 drift between the D and J is 7*5=35.
f. Pair (C,J) is synchronized 60,000 time unit before the synchronization of pair (I,J).

After 60,000 drift between the C and J is 8*6=48.
g. Pair (B,J) is synchronized 70,000 time unit before the synchronization of pair (I,J).

After 70,000 drift between the B and J is 9*7=63.
h. Pair (A,J) is synchronized 80,000 time unit before the synchronization of pair (I,J).

After 80,000 drift between the A and J is 8*10=80.

Table 2 shows drift of other clocks when the pair (I,J) is synchronized at 90,000 and Fig. 2
shows the time graph at that time.

International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

43

Table 2. Drift of other clocks when the pair (I,J) is synchronized at 90,000.

Clock Drift

H 2
G 6
F 12
E 24
D 35
C 48
B 63
A 80

Figure 2. Time graph when (I,J) was synchronized.

8. Theorems

8.1. Theorem-1

If the pair wise synchronization is carried out by selecting pairs, such that they have the
minimum drift between them and the pairs are exclusive for one complete round of
synchronization then the maximum drift is unbounded.

PROOF: Let us assume clock synchronization interval P to be 10,000 , so that KP values

(i.e., Ready Points) are 10,000, 20,000, 30,000, and so on.
In a 8 processors system, let these drifts be +400,+300,+200,+100,-100, -200,-300.-400

(all in ppm) shown in Table 3.

80

63

48

35

2

6

12

24

International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

44

Table 3. 8 processors system with different drift values.

Here we form pairs exclusively and then we implement our newly proposed algorithm on

those pairs.
Here pair is formed between nodes A and B, C and D, E and F, G and H as they have

minimum drift between them. Synchronization is carried out in each pair just like the
following way.

 When the node having the faster clock in a pair reaches the Ready Point = KP, i.e., equal
to an integral multiple of the clock synchronization interval (P) (in this case synchronization
interval is 10,000), it stays in wait state until the node having the slower clock reaches Ready
Point =KP. In this process, first synchronization is carried out between the fastest first and the
fastest second, i.e., between the nodes A and B .Next synchronization is taken place between
the 3rd fastest and the 4th fastest i.e., between the nodes C and D and so on.

One round is completed when the last pair G and H is synchronized.
As the pairs are exclusive and no synchronization is carried out between the individual

pairs, so the maximum drift (i.e., the drift between the slowest and the fastest) will be
increased after each round of synchronization is completed.

8.2. Theorem 2

Table 4. 10 Processor System with different drift values

Node
i

Ci
k(t) when real

time t=10,000

 A 10,000+4

 B 10,000+3

 C 10,000+2

 D 10,000+1

 E 10,000-1

 F 10,000-2

 G 10,000-3
 H 10,000-4

Node i Ci
k(t) when real time

t=10,000
A 10,000+5
B 10,000+4
C 10,000+3
D 10,000+2
E 10,000+1
F 10,000-1
G 10,000-2
H 10,000-3

International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

45

For a given periodicity of pair wise synchronization the maximum drift (i.e., the drift
between the slowest and the fastest) would be bounded in all cases of inclusive selection of
the sequence of pair wise synchronization. This bound would be the smallest when the
sequence of synchronization is the fastest first to the slowest last and the largest when the
sequence of synchronization is the slowest first to the fastest last.

PROOF: Let us assume clock synchronization interval P to be 10,000, so that KP values
(i.e., Ready Points) are 10,000, 20,000, 30,000, and so on.

In a 10 processors system, let these drifts be +500, +400, +300, +200, +100,-100, -200,-
300, -400, -500 (all in ppm) shown in Table 4.

Synchronization is achieved with respect to the slowest among the correct clock. The
slowest node forms a pair with every node. Every pair is synchronized with respect to the
slowest among the correct clocks. Here slowest node is J and the fastest node is A. Pair is
formed between the nodes A and J, B and J, C and J, and D and J, E and J, F and J, G and J, H
and J, I and J. Let the first pair is formed between the slowest first to the fastest last nodes,
i.e., between nodes I and J. Next synchronization is taken place between the 3rd slowest and
the slowest, i.e., between the nodes H and J and so on. One round is completed when the last
pair A and J is synchronized. Synchronization is carried out in each pair just like the
following way.

First synchronization is taken place between the nodes I and J at 10,000, by stopping the
clock of node I when its logical clock reaches its Ready Point= iKP, i.e., equal to an integral
multiple of the clock synchronization interval (P) (in this case iKP =10,000).The node I stays
at 10,000 until the node J reaches 10,000. So, I has to wait 1 time unit.

2nd synchronization is taken place between the nodes H and J at 20,000, by stopping the
clock of node H when its logical clock reaches its Ready Point= iKP, i.e., equal to an integral
multiple of the clock synchronization interval (P) (in this case iKP =20,000).The node H stays
at 20,000 until node J reaches 20,000. So, H has to wait 4 time unit.

3rd synchronization is taken place between the nodes G and J at 30,000, by stopping the
clock of node G when its logical clock reaches its Ready Point= iKP, i.e., equal to an integral
multiple of the clock synchronization interval (P) (in this case iKP =30,000).The node G stays
at 30,000 until node J reaches 30,000. So, G has to wait 9 time unit.

4th synchronization is taken place between the nodes F and J at 40,000, by stopping the
clock of node F when its logical clock reaches its Ready Point= iKP, i.e., equal to an integral
multiple of the clock synchronization interval (P) (in this case iKP =40,000).The node F stays
at 40,000 until node J reaches 40,000. So, F has to wait 16 time unit.

5th synchronization is taken place between the nodes E and J at 50,000, by stopping the
clock of node E when its logical clock reaches its Ready Point= iKP, i.e., equal to an integral
multiple of the clock synchronization interval (P) (in this case iKP =50,000).The node E stays
at 50,000 until node J reaches 50,000. So, E has to wait 30 time unit.

6th synchronization is taken place between the nodes D and J at 60,000, by stopping the
clock of node D when its logical clock reaches its Ready Point= iKP, i.e., equal to an integral
multiple of the clock synchronization interval (P) (in this case iKP =60,000).The node D stays
at 60,000 until node J reaches 60,000. So, D has to wait 42 time unit.

7th synchronization is taken place between the nodes C and J at 70,000, by stopping the
clock of node C when its logical clock reaches its Ready Point= iKP, i.e., equal to an integral
multiple of the clock synchronization interval (P) (in this case iKP =70,000).The node C stays
at 70,000 until node J reaches 70,000. So, C has to wait 56 time unit.

8th synchronization is taken place between the nodes B and J at 80,000, by stopping the
clock of node B when its logical clock reaches its Ready Point= iKP, i.e., equal to an integral

International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

46

multiple of the clock synchronization interval (P) (in this case iKP =80,000).The node B stays
at 80,000 until node J reaches 80,000. So, B has to wait 72 time unit.

9th synchronization is taken place between the nodes A and J at 90,000, by stopping the
clock of node A when its logical clock reaches its Ready Point= iKP, i.e., equal to an integral
multiple of the clock synchronization interval (P) (in this case iKP =90,000).The node A stays
at 90,000 until node J reaches 90,000. So, A has to wait 90 time unit.

One cycle is completed when the last pair A and J is synchronized.
After the completion of one cycle the maximum drift (i.e., the drift between the slowest

and the fastest) is 90.
But if we first synchronize the fastest first and the slowest last, i.e., between the nodes A

and J and next synchronization is taken place between the 2nd fastest and the slowest, i.e.,
between the nodes B and J and so on. After the completion of one cycle the maximum drift
(i.e., the drift between the slowest and the fastest) would be 80, which is already shown in the
algorithm design section.

9. Result

We have developed a simulator in Java for the implementation of the proposed algorithm.
The outcome of the simulator output is given below:

Enter no. of Clocks:
3

Enter 0-th Clock's drift value:
100

Enter 1-th Clock's drift value:
500

Enter 2-th Clock's drift value:
200

Clock synchronization interval (P): 10000

Clock Value having drift ----- 500: 10000
Starts waiting -------

Next Synchronization at: 30000
Synchronization done at ------------- 10000
Synchronization done between clocks having drift 500 and 100
Clock Value having drift ----- 200: 20000
Starts waiting -------
Next Synchronization at : 40000
Synchronization done at ------------- 20000
Synchronization done between clocks having drift 200 and 100
One Cycle Completed

Clock Value of the Fastest Clock: 28160
Clock Value of the slowest Clock: 20000
Difference between the two clocks:8160

International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

47

Clock Value having drift ----- 500 : 30000
Starts waiting -------
Next Synchronization at : 50000
Synchronization done at ------------- 30000
Synchronization done between clocks having drift 500 and 100
Clock Value having drift ----- 200 : 40000
Starts waiting -------
Next Synchronization at : 60000
Synchronization done at ------------- 40000
Synchronization done between clocks having drift 200 and 100
One Cycle Completed

Clock Value of the Fastest Clock: 48210
Clock Value of the slowest Clock: 40000
Difference between the two clocks:8210
Clock Value having drift ----- 500 : 50000
Starts waiting -------
Next Synchronization at : 70000
Synchronization done at ------------- 50000
Synchronization done between clocks having drift 500 and 100
Clock Value having drift ----- 200 : 60000
Starts waiting -------
Next Synchronization at : 80000
Synchronization done at ------------- 60000
Synchronization done between clocks having drift 200 and 100
One Cycle Completed

Clock Value of the Fastest Clock: 68210
Clock Value of the slowest Clock: 60000
Difference between the two clocks:8210
Clock Value having drift ----- 500 : 70000
Starts waiting -------
Next Synchronization at : 90000
Synchronization done at ------------- 70000

Synchronization done between clocks having drift 500 and 100
Clock Value having drift ----- 200 : 80000
Starts waiting -------
Next Synchronization at : 100000
Synchronization done at ------------- 80000
Synchronization done between clocks having drift 200 and 100
One Cycle Completed

Clock Value of the Fastest Clock: 88210
Clock Value of the slowest Clock: 80000
Difference between the two clocks:8210

10. Analysis

International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

48

Table 5. Drift of the fastest clock (500 ppm) with respect to different time

interval.

Real Time Drift

 1000 0.5
 2000 1
 3000 1.5
 4000 2
 5000 2.5
 6000 3
 7000 3.5
 8000 4
 9000 4.5
 10,000 5

Table 6. drift of the slowest clock (100 ppm) with respect to different time

interval.

Real Time Drift

 1000 0.1
 2000 0.2
 3000 0.3
 4000 0.4
 5000 0.5
 6000 0.6
 7000 0.7
 8000 0.8
 9000 0.9
 10,000 1

To represent graphically proposed Clock synchronization algorithm, we take 3 clocks
having drift 500 ppm, 200 ppm, 100 ppm.

We choose resynchronization interval (P) = 10,000.
According to our proposed algorithm, clock having drift 500 ppm is first synchronized

with the clock having drift 100 ppm at 10,000.
Next synchronization is taken place between the clock having drift 200 ppm and the clock

having drift 100 ppm at 20,000.
Figure 3.shows the drift of the fastest (500 ppm) and the slowest clock (100 ppm) before
the synchronization is taking place between them.
At 10,000 drift of the fastest clock (500 ppm) is 5.
At 10,000 drift of the slowest clock (100 ppm) is 1.
At 10,000, synchronization is taking place between these two clocks.
So, drift between them before the synchronization at 10,000 will be (5-1) =4.
These drift (i.e., 4) will be minimized, if we reduce the synchronization interval (P).

International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

49

Table 7. Drift of the 2nd fastest clock (200 ppm) with respect to different time
interval

Real Time Drift

 2000 0.4
 4000 0.8
 6000 1.2
 8000 1.6
 10,000 2
 12,000 2.4
 14,000 2.8
 16,000 3.2
 18,000 3.6
 20,000 4

The table 7 shows drift of the 2nd fastest clock (200 ppm) with respect to different time
interval.

Figure 3. shows the drift of the 2nd fastest (200 ppm) and the slowest clock (100 ppm)
before the synchronization is taking place between them.

At 20,000 they are synchronized.
At 20,000 drift of the 2nd fastest clock (200 ppm) is 4.
At 20,000 drift of the slowest clock (100 ppm) is 2.
So, drift between them before the synchronization at 20,000 will be (4-2) =2.
These drift (i.e., 2) will be minimized, if we reduce the synchronization interval (P).

Figure 3. Drift of the fastest (500 ppm) and the slowest clock (100 ppm) before

synchronization.

 Time

D

ri
ft

 500 ppm drift
 100 ppm drift

0

4

 1

 2

3

5

1000

3000 5000 7000 10000

 200 ppm drift
 100 ppm drift

International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

50

Figure 4. Drift of the 2nd fastest (200 ppm) and the slowest clock (100 ppm)

before synchronization.
Figure 5, shows the clock synchronization between 3 clocks (having drift 500 ppm, 200

ppm, 100 ppm) according to our proposed algorithm.
The following table 8 shows drift of the fastest clock (500 ppm) and the slowest clock (100

ppm) after the first round of synchronization (at 10,000).

Table 8. Drift of the fastest clock and the slowest clock at 10,000 (At 30,000

these two clocks are again synchronized).

11. Proof of concept demonstration

 Fastest clock (500 ppm)

 Slowest clock (100 ppm)

Real Time

Drift

Real Time

Drift

10,000 1 10,000 1

15,000 3.5 15,000 1.5

20,000 6 20,000 2

25,000 8.5 25,000 2.5

30,000 11 30,000 3

 5

4

 Time

0

 1

 2

 3

1200 20000

16000

 D
ri

ft

2000

8000

International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

51

Figure 5. Graphical Representation of Clock Synchronization Including 3 clocks.

Table 9 shows drift of the fastest clock (500 ppm) and the slowest clock (100 ppm) after

the second round of synchronization (at 30,000) between them.

Table 9. Drift of the fastest clock and slowest clock at 30,000.

At 20,000 synchronization is taken place between the 2nd fastest clock (200 ppm) and the

slowest clock (100 ppm).1st cycle of synchronization is completed at 20,000. At that time,
maximum drift (i.e., the drift between the slowest and the fastest) will be 4.

The following table 10 shows drift of the 2nd fastest clock (200 ppm) and the slowest clock
(100 ppm) after the synchronization at 20,000.

 Fastest clock (500 ppm)

 Slowest clock (100 ppm)

Real Time

Drift

Real Time

Drift

30,000 3 30,000 3

35,000 5.5 35,000 3.5

40,000 8 40,000 4

International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

52

Table 10. Drift of the 2nd fastest clock and the slowest clock at 20,000.

At 40,000 these two clocks are again synchronized.
2nd cycle of synchronization is completed at 40,000. At that time maximum drift will be

(i.e., the drift between the slowest and the fastest) 4. So, the maximum drift will be bounded.
In theorem section, we provide simulation output. In simulation output, maximum drift

(i.e., the drift between the slowest and the fastest) is computed after the completion of each
cycle. Maximum drift is almost equal at the end of each cycle. So, we can conclude that the
maximum drift is bounded from the simulation output.

12. Conclusion

In this paper, we have highlighted a practical problem, which can arise, in the case of the
well-known clock synchronization algorithms by Dhruba Basu and Sasikumar Punnekkat
[12]. According to Dhruba Basu and Sasikumar Punnekkat[12], in a n processor system, we
get a fully connected system. No. of network connection will be nC2 , i.e. n(n-1)/2 (where n is
the no. of processors). Complexity of the algorithm proposed by them is 0(n2). We have
proposed a new algorithm for clock synchronization, which overcome this problem by
reducing total network connections of the system. In our proposed algorithm, no. of network
connection will be (n-1) (where n is the no. of processors). Complexity of the newly proposed
algorithm will be 0(n). The fundamental concept of our proposed algorithm is to perform pair
wise synchronizations. Slowest node forms a pair with every node. Every pair is synchronized
with respect to the slowest among the correct clocks. A minor criticism against our algorithm
could be that, since faster clocks are made to wait the overall utilization of the system
decreases. Clearly there is a tradeoff between predictability and optimality of
utilization/accuracy, but in the class of system we are dealing with, the thrust is on predictable
solutions rather than optimal utilization, thus favoring our new algorithm. Presently, we are
working on algorithm that tries to reduce the maximum drift (i.e., the drift between the
slowest and the fastest) and will give better synchronization.

Acknowledgement

This work was supported by the Security Engineering Research Center, granted by the
Korea Ministry of Knowledge Economy.

References

 2nd fastest clock(200 ppm)

 Slowest clock (100 ppm)

Real Time

Drift

Real Time

Drift

20,000 2 20,000 2

25,000 3 25,000 2.5

30,000 4 30,000 3

35,000 5 35,000 3.5

40,000 6 40,000 4

International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

53

[1] Thomas Anderson and John Knight, “A Framework for Software Fault Tolerance in Real-Time Systems,”
IEEE Transactions on Software Engineering, Vol. SE-9, No.3, 355-364, 1983.

[2] Flaviu Cristian, “Probabilistic Clock Synchronization,” Distributed Computing, No.3, pp 146-158,
Springer-Verlag, 1989.

[3] H. Kopetz and G. Grünsteidl, “TTP- A Protocol for Fault Tolerant Real-Time Systems,” IEEE Computer,
January 1994.

[4] H. Kopetz and W. Oshsenreiter, “Clock Synchronization in Real-Time Systems,” IEEE Transactions on
Computers ,Vol. 36, No.8 pp 933-940, August 1987.

[5] Leslie Lamport and P.M. Melliar-Smith, “Synchronizing Clocks in the Presence of Faults,” Journal of the
Association for Computing Machinery, Vol. 32, No.1, pp 52-78, January 1985.

[6] C.L. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming 1973.

[7] Brian Randell, “System Structure for Software Fault Tolerance,” IEEE Transactions on Software
Engineering, Vol. SE-1, No.2, pp 220-232, 1975.

[8] K.G. Shin and P. Ramamathan, ”Transmission Delay in Hardware Clock Synchronization,” IEEE
Transactions on Computers ,Vol. 37, No.11, pp 1465-1467, November 1988.

[9] Anupam Sinha, Pradip K. Das, and Dhruba Basu, “Implementation and Timing Analysis of Clock
Synchronization based on a transputer-based replicated system ,” Information and Software Technology, Vol.
40, No.5-6, pp 291-301, July 1998.

[10] T.K. Srikanth and Sam Toueg, “Optimal Clock Synchronization,” Journal of the Association for
Computing Machinery, Vol. 34, No.3 pp 626-645, July 1987.

[11] Jia Xu and David L. Parnas, “On Satisfying Timing Constraints in Hard Real-Time Systems,” IEEE
Transactions on Software Engineering, Vol. 19, No.1, pp 70-84, January 1993.

[12] Dhruba Basu and Sasikumar Punnekkat, “Clock Synchronization Algorithms and Scheduling Issues,” at
5th International Workshop Distributed Computing, Kolkata, India, Dec 27-30, 2003. Proceeding LNCS 2918,
Springer 2003.

[13] Barbara Simons, “an Overview of Clock Synchronization,” IBM Research Jennifer Lundelius Welch,
GTE Laboratories Incorporated Nancy Lynch MIT, August 23, 1988.

International Journal of Database Theory and Application

Vol. 2, No. 2, June 2009

54

