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Abstract

The paper deals with the case of non-selective predation in a partially infected prey-predator sys-
tem, where both the susceptible prey and predator follow the law of logistic growth and some preys
avoid predation by hiding. The disease-free preys get infected in due course of time by a certain
rate. However, the carrying capacity of the predator population is considered proportional to the
sum-total of the susceptible and infected prey. The positivity and boundedness of the solutions of
the system are studied and the existence of the equilibrium points and stability of the system are
analyzed at these points. The effect of the infected prey-refuge on each population density is also
discussed. It is observed that a Hopf-bifurcation may occur about the interior equilibrium, where
the refuge parameter is considered as the bifurcation parameter. The analytical findings are illus-
trated through computer simulation using Maple that show the reliability of the model from the
ecological point of view.

Keywords: Carrying capacity; Positivity; Boundedness; Susceptible; Stability; Bifurcation;
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1. Introduction

The dynamical relationship between prey and predator has been of utmost importance in theoret-
ical ecology and has been studied in detail by Zhao and Dai (2018), Kar and Mondol (2013) and
Sarkar et al. (2017) to name a few. The predator functional response on prey population that de-
scribes the number of prey consumed per predator per unit of time is the most important element
in prey-predator interaction. The most important functional responses is Lotka-Volterra functional
response (Holling type-I functional response) that was pioneered by Holling (1965). After fur-
ther studies, Holling (1965) along with Murray (1993) and Kot (2001) modified the concept and
brought in the Holling type-II functional response that was studied in detail by Skalski and Gilliam
(2001), Neverova et al. (2019) and others. Two species prey-predator models have been studied
extensively in theoretical ecology for quite a long time. There are many research works on three
species systems as well, e.g., two predators and one prey system studied by Freedman and Waltman
(1977), Maity et al. (2008) and Kundu and Maitra (2018).

The effect of prey-refuges on the prey-predator interaction has always developed keen interest
amongst researchers. The Australian fur seal feed on lobster and squid that often find refuge some-
where under water to escape predation. Several other examples are also available in the literature
that provide reasonably convincing evidence that refuges can prohibit prey extinction, for exam-
ple, Kar (2005), Sharma and Samanta (2015), Zhang et al. (2019), Abdulghafur and Naji (2018)
and Kar et al. (2018) to name a few. These studies concluded that the refuge used by the prey has
a stabilizing effect on the predator-prey interaction because once the prey escapes predation, the
balance is maintained. Researchers had further improvised the interaction between multiple preys
along with predators under the effect of prey refuge, i.e., some preys would find refuge somewhere
in space to escape predation. Modelling of susecptible and infected prey together has also been an
area of research, where both are subjected to predation.

In the present article we consider a system where the susceptible prey obeys the logistic growth
rate which eventually gets infected by some diseases at a certain rate. Some common infections
that marine creatures often have are Brooklynellosis, coral reef fish disease, etc. The predator
population having a carrying capacity proportional to the size of the susceptible and infected prey
together follows logistic law of growth. The proposed predator-prey model is an extension of the
model suggested by Das et al. (2009). Chattopadhyay et al. (1999) has highlighted the aspect,
where only the susceptible prey population is considered for predation but we have extended the
model by considering that both susceptible and infected prey are equally vulnerable to predation
because during predation it is not possible to discriminate between the susceptible and infected
population and hence, the predator will consume both, which eventually makes our consideration
more realistic.

The paper has been organized in eight sections with an appendix. The construction and model
assumptions are discussed in Section 2. In Section 3, the positivity and boundedness of the system
is discussed. Section 4 and Section 5 deal with the existence and the local along with the global
stability analysis respectively. The existence of Hopf Bifurcation around the interior equilibrium
has been shown in the next section. The important findings are numerically verified using Maple

2

Applications and Applied Mathematics: An International Journal (AAM), Vol. 16 [2021], Iss. 2, Art. 12

https://digitalcommons.pvamu.edu/aam/vol16/iss2/12



992 M. Sarkar and T. Das

in Section 7. It is observed that our result supplements several other similar type of works. Finally,
Section 8 contains the conclusive discussion and implications of our findings.

2. Formulation of the problem

Let us consider a prey-predator population that obeys the Holling-Tanner type dynamical system
given as:

dx

dt
= r1x(1−

x

l
)− pxy − αz(x− k0),

dy

dt
= pxy − cy − qyz,

dz

dt
= r2z{1−

z

v(x+ y)
}+mαz(x− k0),

(1)

with initial conditions

x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0. (2)

Here x(t), y(t) and z(t) are the densities of the susceptible prey, infected prey and predator popu-
lation respectively at time t; r1 is the intrinsic growth rate and l is the carrying capacity of the prey
population; α is the predation parameter and k0 is the number of preys that find refuge somewhere
in space with x > k0; m is the conversion factor in the case of consumption of susceptible prey
population and p is the rate at which the prey population is infected known as the contact rate; c
is the intrinsic death rate of the infected prey and q is the rate at which the predator population is
consuming the infected prey.

Furthermore, the predator grows as per the logistic law with intrinsic growth rate r2 and carrying

capacity proportional to the size of the prey population. According to Das et al. (2009),
1

v
is the

amount of susceptible and infected prey required to support one predator at equilibrium when z
equals v(x + y). The dynamical behaviours of Holling-Tanner model is discussed in details in
various articles like May (1974) and Braza (2018).

In the present article, α(x− k0) is the amount of the susceptible prey consumed by one predator in
a unit of time, a fraction m (0 < m < 1) of the transformed energy goes into the reproduction of
predators.

3. Basic Properties

The following theorem proves the positivity of system (1).

Theorem 3.1.

Every solution of system (1) with initial conditions (2) exists in the interval [0,∞) and x(t) ≥
0, y(t) ≥ 0, z(t) ≥ 0 for all t ≥ 0.

3
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Proof:

Since the right hand side of system (1) is completely continuous and locally Lipschitzian on C,
the solution (x(t), y(t), z(t)) of (1) with initial conditions (2) exists and is unique on [0, ξ), where
0 < ξ ≤ +∞. From system (1) with initial conditions (2), we have:

x(t) = x(0) exp
[∫ t

0

{
r1 − r1x(θ)

l
− py(θ)− αz(θ) + αz(θ)k0

x(θ)

}
dθ
]
≥ 0,

y(t) = y(0) exp
[∫ t

0
{px(θ)− c− qz(θ)} dθ

]
≥ 0,

z(t) = z(0) exp
[∫ t

0

{
r2 − r2z(θ)

v(x(θ)+y(θ))
+mα(x(θ)− k0)

}
dθ
]
≥ 0.

Hence proved. �

The following theorem proves the boudedness of system (1).

Theorem 3.2.

All the solutions of Equation (1) which initiate in R3
+ are uniformly bounded if γ < mc, where γ

is a positive constant to be suitably defined.

Proof:

Let us define a function

w = mx+my + z. (3)

The derivative of Equation (3) with respect to time along with the solutions of (1) is

dw

dt
= mr1x(1−

x

l
) + r2z{1−

z

v(x+ y)
} −mcy −mqyz. (4)

For each γ > 0, the following inequality holds:

dw

dt
+ γw <

ml

4r1
(r1 + γ)2 +

v(x+ y)(r2 + γ)2

4r2
+m(γ − c)y. (5)

If we consider γ ≤ c, the above equation reduces to

dw

dt
+ γw <

ml

4r1
(r1 + γ)2 +

v(x+ y)(r2 + γ)2

4r2
, (6)

i.e.,

dw

dt
+

{
γm− v(r2 + γ)2

4r2

}
x+

{
γm− v(r2 + γ)2

4r2

}
y + γz <

ml

4r1
(r1 + γ)2. (7)

Then, we can find an m′ such that

dw

dt
+ γm′x+ γm′y + γz <

ml

4r1
(r1 + γ)2. (8)
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Since 0 < m < 1 and m′ < m, let

w′ = m′x+m′y + z. (9)

Therefore,

w′ < w. (10)

Now,

dw′

dt
+ γw′ <

ml

4r1
(r1 + γ)2. (11)

Consequently, it follows the right hand side of Equation (9) is bounded. Hence, we can find a µ
such that

dw′

dt
+ γw′ < µ. (12)

Applying the theory of differential inequality, we obtain

0 < w′(x, y, z) <
µ

γ
(1− e−γt) + w′(x(0), y(0), z(0))e−γt,

and for t→∞, we have

0 < w′ <
µ

γ
. (13)

Since w − w′ is finite, let w − w′ ≈ k.

Hence, we have

k < w <
µ

γ
+ k. (14)

Hence, all the solutions of Equation (1) that initiate in R3
+ are confined in

B = {(x, y, z) ∈ R3
+ : k < w <

µ

γ
+ k, for any k > 0}. �

4. Equilibrium points: their existence and stability

In this section, we discuss the existence and stability behavior of the system (1) at the equilibrium
points. The equilibrium points of (1) are:

(1) Trivial equilibrium: E0(0, 0, 0)
(2) Axial equilibrium: E1(l, 0, 0)

5
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(3) Planar equilibrium:

(i) E2

(
c

p
,
r1
p

(
1− c

pl

)
, 0

)
(ii) E3(x1, 0, z1); x1 = k0 +

−B +
√
B2 − 4AC

2A
and z1 =

r1x1(l − x1)
lα(x1 − k0)

;

E3(x2, 0, z2); x2 = k0 +
−B −

√
B2 − 4AC

2A
and z2 =

r1x2(l − x2)
lα(x2 − k0)

,

where A = mlα2v, B = r2lαv + r1r2 and C = r1r2(k0 − l).

It is to be noted that E3(x1, 0, z1) exists if x1 > 0 and either l > x1 > k0 or l < x1 < k0 and
E3(x2, 0, z2) exists if x2 > 0 and either l > x2 > k0 or l < x2 < k0.

(4) Interior equilibrium: E4(x
∗, y∗, z∗)

4.1. Existence of interior equilibrium

In this section, we will analyze the existence of non trivial interior equilibrium point of the model
system (1). The following conditions hold at the interior equilibrium:

x > 0, y > 0, z > 0,

and

dx

dt
=

dy

dt
=

dz

dt
= 0. (15)

Solving Equation (1) at the equilibrium value, we get

z∗ =
px∗ − c

q
,

and

y∗ =
r1x
∗q(l − x∗) + α(px∗ − c)(x∗ − k0)

pqx∗
.

Now, putting the values of z∗ and y∗ in the third equation of (1) at the interior equilibrium and
simplifying, we get

Mx∗3 +Nx∗2 +Ox∗ + P = 0, (16)

where

M = vmαr1q + vmα2lp > 0,

6
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N = vr1r2q + vr2αlp− vr2pql − vmαr1ql − vmα2lpk0
-vmα2lc− vmαpql −vmk0r1q − vmαlk0p+ vmk0pql + p2lr2,

O = −vr1r2ql − vr2αlpk0 − vr2αlc+ vmα2lck0
+vmk0r1ql + vmαlk20p+ vmαlck0 − plr2c,

P = vr2αlck0 − vmαlck20 = vαlkc0(r2 − αk0).

Therefore, if P < 0, i.e., the intrinsic growth rate of the predator is less than the product of the
predation paramter and the number of preys that find refuge somewhere in space, there must exist
at least one positive root of equation (16). A detailed calculation regarding this has been shown in
Appendix 1. Summarizing the above observations, we arrive at the following result.

Theorem 4.1.

The necessary and sufficient condition for the existence of at least one non-trivial interior equilib-
rium point E4(x

∗, y∗, z∗) of the system (1) is that P in Equation (16) must be negative.

4.2. Local Stability Analysis

4.2.1. Trivial euilibrium E0

The variational matrix of the system (1) at E0(0, 0, 0) is given by

V (E0) =

r1 0 αk0
0 −c 0
0 0 r2 −mαk0

 .
Therefore, the eigenvalues of the characteristic equation of V (E0) are λ1 = r1, λ2 = −c and
λ3 = r2 − mαk0. It is clear that λ1 is positive making E0 unstable. Hence, we arrive at the
following theorem.

Theorem 4.2.

The trivial equilibrium of the system (1), although it exists, is unstable.

4.2.2. Axial euilibrium E1

The variational matrix of system (1) at E1(l, 0, 0) is given by

V (E1) =

−r1 −pl −αl + αk0
0 pl 0
0 0 r2 +mα(l − k0)

 .
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Hence, the eigenvalues of the characteristic equation of V (E1) are λ1 = −r1 < 0, λ2 = pl >

0, λ3 = r2+mα(l−k0). It is clear that λ2 is positive makingE1 an unstable equilibrium. Therefore,
we arrive at the following theorem.

Theorem 4.3.

The axial equilibrium of system (1) exists but is unstable.

4.2.3. Planar equilibrium E2 and E3

(i) E2 exists only when 1− c

pl
> 0, i.e., l >

c

p
.

We find that
dy

dt
|z=0 < 0 if y(px − c) < 0, i.e., x0 <

c

p
. Since x ≤ x0 at any time t0, where x0 is

the initial susceptible prey population, we have

x ≤ x0 ≤
c

p
,

so that

px− c < 0.

Hence,
dy

dt
< 0, for all t, whenever x0 < ρ, considering ρ =

c

p
.

Now, ρ is called the relative removal rate of the susceptible prey due to infection and hence, the
infection in the susceptible prey population can not spread at all unless x0 > ρ, known as the
threshold phenomenon. Consequently, the carrying capacity of the susceptible prey population
must exceed its relative removal rate due to infection.

Now, the variational matrix of the system (1) at E2

(
c

p
,
r1
p
(1− c

pl
), 0

)
is given by

V (E2) =



−r1c
lp

−c −αc
p

+ αk0

r1(1−
c

pl
) 0

qr

p
(1− c

pl
)

0 0 r2 +mα(
c

p
− k0)


.

The eigenvalues of the characteristic equation of V (E2) are

λ1 = r2 +mα

(
c

p
− k0

)
,

8
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and

λ2,3 =

−r1c
pl
±

√
r21c

2

p2l2
− 4

(
cr1 −

c2r1
pl

)
2

,

(λ2,3 indicate λ2 and λ3 for the positive and negative consideration in ±, respectively).

Now, if
c

p
> k0, i.e., the relative removal rate exceeds the number of of preys that somewhere

find refuge in space, the equilibrium point becomes unstable and this is also the condition that the
infection can not spread. Hence, we arrive at the following theorem.

Theorem 4.4.

If the infection in the prey population can not spread, the planar equilibrium point E2 of Equation
(1) becomes unstable.

(ii) E3(x1, 0, z1) or E3(x2, 0, z2) exist only when x1 > 0 and x2 > 0, i.e.,

k0 +
−B ±

√
B2 − 4AC

2A
> 0, z1 > 0 and z2 > 0,

implying

r1x1(l − x1)
lα(x1 − k0)

> 0,

r1x2(l − x2)
lα(x2 − k0)

> 0.

Now, the variational matrix of the system (1) at E3(x1, 0, z1) is given by

V (E3) =



−r1 −
2r1x1
l
− αz1 −px1 −αx1 + αk0

0 px1 − c− qz1 0

r2z
2
1

vx21
+mαz1

r2z
2
1

vx21
r2 −

2r2z1
v(x1 + y1)

+mα(x1 − k0)


.

Therefore, the characteristic equation of V (E3) is given by

λ2 + Cλ+D = 0, (17)

where

9
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C = −2r1 + 2r1

(
x1
l
+

z1
vx1

)
+ αz1 −mα(x1 − k0),

and

D =

{
r1 −

2r1x1
l
− αz1

}{
r1 −

2r1z1
vx1

+mα(x1 − k0)
}
.

By Routh-Hurwitz criterion, it follows that all the eigenvalues of the characteristic equation (17)
have negative real parts if and only if

C > 0, D > 0. (18)

Similar conclusion follows for E3(x2, 0, z2).

Hence, it follows that the system (1) shows a local asymptotic stability at E3 when x1 > 0, x2 > 0,
z1 > 0, z2 > 0 and condition (18) are simaltaneously satisfied.

So, we arrive at the following theorem.

Theorem 4.5.

The planar equilibrium E3 of the system (1) exists and is locally aymptotically stable if x1 > 0,
x2 > 0, z1 > 0, z2 > 0 and condition (18) are satisfied.

4.2.4. Interior equilibrium E4

The variational matrix of (1) at E4(x
∗, y∗, z∗) is given by

V (E4) =



−r1 −
2r1x

∗

l
− py∗ − αz∗ −px∗ −αx∗ + αk0

py∗ px∗ − c− qz∗ −qy∗

r2z
∗

v(x∗ + y∗)2
+mαz∗

r2z
∗2

v(x∗ + y∗)2
r2 −

2r2z
∗

v(x∗ + y∗)
+mα(x∗ − k0)


.

Therefore, the characteristic equation of V (E4) is given by,

λ3 + a1λ
2 + a2λ+ a3 = 0, (19)

where

a1 = r1 − 2r1x
∗ − py∗ − αz∗ + r2 −

2r2z
∗

v(x∗ + y∗)
+mα(x∗ − k0) + px∗ − c− qz∗,

10
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a2 = −(r1 − 2r1x
∗ − py∗ − αz∗){r2 −

2r2z
∗

v(x∗ + y∗)
+mα(x∗ − k0)

+px∗ − c− qz∗} − (px∗ − c− qz∗){r2 −
2r2z

∗

v(x∗ + y∗)

+mα(x∗ − k0)} − p2x∗y∗ + α(k0 − x∗){
r2z
∗

v(x∗ + y∗)2
+mαz∗},

a3 = (r1 − 2r1x
∗ − py∗ − αz∗){(px∗ − c− qz∗) ∗ (r2 −

2r2z
∗

v(x∗ + y∗)

+mα(x− k0)) + qy∗r2z∗2

v(x∗+y∗)2
}+ px∗{py∗r2 − py∗

2r2z
∗

v(x∗ + y∗)

+py∗mα(x∗ − k0) +
qy∗r2z

∗

v(x∗ + y∗)2
+ qy∗mαz∗}+ (αk0 − αx∗)

py∗r2z
∗2

v(x∗ + y∗)2

−α(k0 − x∗){
r2z
∗

v(x∗ + y∗)2
+mαz∗}(px∗ − c− qz∗).

By Routh-Hurwitz criterion, it follows that all eigenvalues of the characteristic equation (19) have
negative real parts if and only if

a1 > 0, a3 > 0, a1a2 > a3. (20)

Therefore, the interior equilibrium E4 of the model (1) is locally asymptotically stable when con-
ditions (20) are satisfied. Hence, we have the following result.

Theorem 4.6.

The interior equilibrium E4 of the system (1) is locally asymptotically stable if and only if condi-
tions (20) are satisfied.

5. Global stability analysis

In this section, we shall study the global stability behaviour of the system at the interior equilibrium
E4(x

∗, y∗, z∗). Let us define

L = P [x− x∗ − xln x
x∗

] +Q[y − y∗ − yln y
y∗

] +R[z − z∗ − zln z
z∗
], (21)

where P,Q, and R are positive constants to be chosen later.

It is to be noted that L(x, y, z) ≥ 0 and L(x∗, y∗, z∗) = 0.

Furthermore,
dL

dt
is negative definite and consequently L is a Lyapunov function studied by Murray

(1993) and Kot (2001) with respect to all solutions in the positive octant. A detailed caculation in
this regard has been shown in the Appendix 2.

Summarizing the above discussions we arrive at the following result.
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Theorem 5.1.

If
r1
l
> αk0, z > z∗, y > y∗ and x∗ + y∗ > x+ y, then, E4 is globally asymptotically stable.

6. Hopf-bifurcation at E4(x
∗, y∗, z∗)

The characteristic equation of the system (1) at E4 is given by

λ3 + a1(m)λ2 + a2(m)λ+ a3(m) = 0, (22)

where

a1(m) = r1 − 2r1x
∗ − py∗ − αz∗ + r2 −

2r2z
∗

v(x∗ + y∗)
+mα(x∗ − k0) + px∗ − c− qz∗,

a2(m) = −(r1 − 2r1x
∗ − py∗ − αz∗){r2 −

2r2z
∗

v(x∗ + y∗)
+mα(x∗ − k0)

+px∗ − c− qz∗} − (px∗ − c− qz∗){r2 −
2r2z

∗

v(x∗ + y∗)

+mα(x∗ − k0)} − p2x∗y∗ + α(k0 − x∗){
r2z
∗

v(x∗ + y∗)2
+mαz∗},

a3(m) = (r1 − 2r1x
∗ − py∗ − αz∗){(px∗ − c− qz∗) ∗ (r2 −

2r2z
∗

v(x∗ + y∗)

+mα(x− k0)) + qy∗r2z∗2

v(x∗+y∗)2
}+ px∗{py∗r2 − py∗

2r2z
∗

v(x∗ + y∗)

+py∗mα(x∗ − k0) +
qy∗r2z

∗

v(x∗ + y∗)2
+ qy∗mαz∗}+ (αk0 − αx∗)

py∗r2z
∗2

v(x∗ + y∗)2

−α(k0 − x∗){
r2z
∗

v(x∗ + y∗)2
+mαz∗}(px∗ − c− qz∗).

To check whether the system (1) is stable or not, let us consider m as the bifurcation parameter.
For this purpose, using the following theorem stated by Murray (1993):

If ai(m), i = 1, 2, 3 are smooth functions of m in an open interval about m0 such that the charac-
teristic equation (22) has

(1) a pair of complex eigenvalues λ = α(m)± iβ(m)(with α(m), β(m) ∈ R) so that they become

purely imaginary at m = m0 and
dα

dm
|m=m0

6= 0,

(2) the other eigenvalue is negative at m = m0 then, a Hopf-bifurcation occurs around E4 at
m = m0(i.e. a stability change of E4 accompanied by the creation of a limit cycle at m = m0).

Hence, we have the following result:
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Theorem 6.1.

The system (1) possesses a Hopf-bifurcation around E4 when m passes through m0 provided
a1(m0) > 0, a2(m0) > 0 and a1(m0)a2(m0) = a3(m0).

Proof:

For m = m0, the characteristic equation of the system (1) at E4 becomes (λ2 + a2)(λ + a1) = 0,
providing roots λ1 = i

√
a2, λ2 = −i

√
a2, and λ3 = −a1. Hence, there exists a pair of purely imag-

inary eigenvalues and a strictly negative real eigenvalue. Also ai(i = 1, 2, 3) are smooth functions
of m.

Taking m in a neighborhood of m0, roots are of the form

λ1(m) = b1(m) + ib2(m),

λ2(m) = b1(m)− ib2(m),

λ3 = −b3(m),

where bi(m), i = 1, 2, 3 are real.

Next, we verify the transversality condition

d

dm
(Re(λi(m))) |m=m0

6= 0, i = 1, 2, 3.

Substituting λ = b1(m) + ib2(m) into the characteristic equation (22), we get

(b1 + ib2)
3 + a1(b1 + ib2)

2 + a2(b1 + ib2) + a3 = 0. (23)

Taking the derivatives of both sides of (23) with respect to m, we get

3(b1 + ib2)
2(ḃ1 + iḃ2) + 2a1(b1 + ib2)(ḃ1 + iḃ2)

+ ȧ1(b1 + ib2)
2 + a2(ḃ1 + iḃ2) + ȧ2(b1 + ib2) + ȧ3 = 0.

(24)

Comparing the real and imaginary parts from both sides of (24), we get,

D1ḃ1 −D2ḃ2 +D3 = 0, (25)

and

D2ḃ1 +D1ḃ2 +D4 = 0, (26)

where

D1 = 3(b21 − b22) + 2a1b1 + a2,
D2 = 6b1ḃ2 + 2a1ḃ2,
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D3 = ȧ1(b
2
1 − b22) + ȧ2b1 + ȧ3,

D4 = 2ȧ1b1b2 + ȧ2b2.

From (25) and (26) we get,

ḃ1 = −
D2D4 +D1D3

D2
1 +D2

2

. (27)

Now,

D3 = ȧ1(b
2
1 − b22) + ȧ2b1 + ȧ3 6= ȧ1(b

2
1 − b22) + ȧ2b1 + ȧ1a2 + ȧ2a1.

At m = m0 :

Case I:

b1 = 0, b2 =
√
a2.

D1 = −2a2, D2 = −2a1
√
a2, D3 6= a1ȧ2, D4 = ȧ2

√
a2.

∴ D2D4 +D1D3 6= 2a1a2ȧ2 − 2a1a2ȧ2 = 0.
So, D2D4 +D1D3 6= 0 at m = m0, when b1 = 0, b2 =

√
a2.

Case II:

b1 = 0, b2 = −
√
a2.

D1 = −2a2, D2 = −2a1
√
a2, D3 6= a1ȧ2, D4 = −ȧ2

√
a2.

∴ D2D4 +D1D3 6= 2a1a2ȧ2 − 2a1a2ȧ2 and 2a1a2ȧ2 − 2a1a2ȧ2 = 0.
So, D2D4 +D1D3 6= 0 at m = m0, when b1 = 0, b2 = −

√
a2.

∴
d

dm
(Re(λi(m))) |m=m0

= −D2D4 +D1D3

D2
1 +D2

2

|m=m0
6= 0,

and

b3(m0) = −a1(m0) < 0. �

7. Numerical Results

Analytical studies remain incomplete without numerical validation of the theories proposed.
Hence, in this section, we consider computer simulation of some solutions of system (1) where
the values of the parameters have been set on the basis of data used in various other relevant re-
search articles, e.g., Chattopadhyay et al. (1999), Neverova et al. (2019), Sharma and Samanta
(2015) and Zhang et al. (2019). Apart from verifying our analytical findings, even from practical
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point of view, these numerical solutions are very important. We consider the values of the param-
eters in proper units in the examples mentioned below.

Example 7.1.

Considering the values in the data sets given in Table 1 and Table 2 below in appropriate units and
plotting the susceptible and infected prey and predator population with respect to time, we find the
curve and the phase space trajectories as in Figure 1, 2, 3, and 4 subsequently.

Table 1. Data Set 1 with parameter values

Parameter Values
r1 3
l 10
α 0.005
k0 0.01
p 0.1
c 0.09
q 0.4
m 0.5
v 0.10
r2 15

Table 2. Data Set 2 with parameter values

Parameter Values
r1 1.9
l 4
α 5
k0 10
p 1
c 5
q 4
m 5
v 0.10
r2 1.5
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Figure 2. Phase space trajectories with parameter values of Table 1

Figure 1. Time series plot of the susceptible, infected prey and predator population
for parameter values as in Table 1

Figure 3. Time series plot of the susceptible, infected prey and predator population
for parameter values as in Table 2
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Figure 4. Phase space trajectories with parameter values of Table 2

8. Conclusion

A typical predator-prey model, where only the prey population is infected by an infectious dis-
ease, has been discussed thoroughly in this paper. The prey population has been divided into two
categories, one that is susceptible and the other that is infected. It has been assumed that some
susceptible preys manage refuge in space and hence avoid predation. The carrying capacity of the
predator population is proportional to the cumulative total of susceptible and infected prey popula-
tion. The dynamical behaviour of the system at various equilibrium points and their stability have
also been discussed in detail. The proposed system has six equilibrium points, namely, one trivial
equilibrium E0, one axial equilibrium E1, three planar equilibria E2 and E3 (with two sets of val-
ues) and an interior equilibrium point E4. As observed, E0 and E1 always exist but are unstable.
If the infection in the prey population can not spread then E2 also becomes unstable. It has been
found that the remaining planar equilibriums and the interior equilibrium are stable under certain
conditions. The global stability of the interior equilibrium point has also been studied and the con-
dition for which the interior equilibrium point is globally asymptotically stable has been obtained.
However, the incorporation of prey refuge in the environment for which only a fraction of the
susceptible prey remains accessible to the predator makes the paper more realistic. Increasing the
amount of prey refuge can decrease both the infected prey density and the predator density. It has
also been observed that the refuge parameter m is a very important factor to control the stability of
the system and a stability switch and Hopf-bifurcation may occur at the interior equilibrium point
taking m as the bifurcation parameter.

The other significant factor is the carrying capacity of the predator which is proportional to the
infected and the susceptible prey population. Since analytical studies are incomplete without nu-
merical verifications of the results, the findings are numerically verified using Maple. Hence, the
prey-predator model described in the article shows very interesting dynamics when it is assumed
that only the susceptible prey grows logistically but the infected prey does not. As the infected
preys have disease in them, they are considered to be weak and hence incapable of reproduction.
Therefore, the model can be further improvised considering the logistic growth in the infected pop-
ulation as well. One can also incorporate refuge in the infected population model. The harvesting
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of one or both the species may even be considered. However, the consumption of both susceptible
and infected prey species by the predator is not an instantaneous process and hence there must be
some time-lag known as gestation delay. Hence, there is ample scope of incorporating this delay
in the model to make it even more realistic.
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APPENDIX

1. Conditions for Existence of Interior Equilibrium

It is obvious that M is always positive, However, the signs of N, O, P are not obvious. Ap-
plying Descartes’s Rule of Signs in Equation (4.2), we obtain:
1. if N > 0, O > 0, P > 0, then there is no change of sign, so there exists no positive root of
Equation (16),
2. if N > 0, O > 0, P < 0, then there exists only one positive root of Equation (16),
3. if N > 0, O < 0, P < 0, then there exists only one positive root of Equation (16),
4. if N < 0, O < 0, P < 0, then there exists only one positive root of Equation (16),
5. if N > 0, O < 0, P > 0, then there exists two or no positive roots of Equation (16),
6. if N < 0, O < 0, P > 0, then there exists two or no positive roots of Equation (16),
7. if N < 0, O > 0, P > 0, then there exists two or no positive roots of Equation (16),
8. if N < 0, O > 0, P < 0, then there exists three or one positive roots of Equation(16).

2. Global Stability Analysis

Differentiating (21) along the solutions of (1) with respect to t we get,

dL

dt
= P

x− x∗

x

dx

dt
+Q

y − y∗

y

dy

dt
+R

z − z∗
z

dz

dt
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= P [r1(1−
x

l
)− py − αz + αk0

x
](x− x∗) +Q[px− c− qz](y − y∗)

+R[r2{1−
z

v(x+ y
}+mα(x− k0)](z − z∗)

= P [
r1
l
(x− x∗)− p(y − y∗)− α(z − z∗) + αk0(

1

x
− 1

x∗
)](x− x∗)

+Q[p(x− x∗)− q(z − z∗)](y − y∗) +R[
−r2
v

(
1

x+ y
− 1

x∗ + y∗
)

+mα(x− x∗)](z − z∗)

= −P (r1
l
+ αk0)

(x− x∗)2

xx∗
+ p(Q− P )(x− x∗)(y − y∗)

+α(Rm− P )(x− x∗)(z − z∗) +Qq(z − z∗)(y − y∗)
+
Rr2
v

x∗ + y∗ − x− y
(x+ y)(x∗ + x)

(z − z∗).

Now, we choose P = Q and
P

R
= m. Then, on simplification we get,

dL

dt
=− P

(r1
l
− αk0

) (x− x∗)2

xx∗

− (z − z∗)vQq(y − y
∗)(x+ y)(x∗ + y∗) +Rr2(x

∗ + y∗ − x− y)
v(x+ y)(x∗ + y∗)

.

Therefore,
dL

dt
< 0 if

r1
l
> αk0, z > z∗, y > y∗ and x∗ + y∗ > x+ y.

20

Applications and Applied Mathematics: An International Journal (AAM), Vol. 16 [2021], Iss. 2, Art. 12

https://digitalcommons.pvamu.edu/aam/vol16/iss2/12


	(R1493) Discussion on Stability and Hopf-bifurcation of an Infected Prey under Refuge and Predator
	Recommended Citation

	tmp.1638806886.pdf.Z3lfy

