B.TECH/AEIE/4TH SEM /AEIE 2201/2016

(vi)	Propagation delay of a logic gate can be n (a) crystal oscillator (c) ring oscillator		(b) ring counte	neasured by (b) ring counter (d) none of the above.	
(vii)	A classification of gates on a chip is (a) SSI	f ICs with complexiti known as (b) MSI	ies of 100 to 100	0 equivalent (d) VLSI.	
(viii)	How many flip-flops are required to make a MOD-30 binary counter? (a) 15 (b) 6 (c) 5 (d) 30.				
(ix)	The terminal cou (a) 1000 ₂	nt of a typical modulu (b) 1110 ₂	alus-15 binary counter is (c) 1011_2 (d) 1101_2 .		
(x)	A J-K flip-flop with J = 1 and K = 1 ha output is (a) constantly low (c) a 20 kHz square wave		a 20 kHz clock input. The Q (b) constantly high (d) a 10 kHz square wave.		

Group - B

- 2. (a) Realize (i) a buffer and an inverter by using XOR gate. (ii) an OR gate by using only NAND gate.
 - (b) Convert (324.576)8 = (??)16
 - (c) What is the difference between combinational and sequential circuit?
 - (d) Design a 4-bit full adder-subtractor circuit.

2 + 2 + 2 + 6 = 12

- 3. (a) Realize an 8:1 multiplexer by using 2:1 multiplexer.
 - (b) Implement the logic function $Y(A,B,C,D) = \sum m(1,4,5,7,9,12,13)$ by using 4:1 multiplexer. 4 + 8 = 12

-1 -1

Group - C

- 4. (a) Minimize the logic function $Y(A,B,C,D,E) = \sum m(0,2,3,5,7,8,10,11,14,1516,18,24,26,27,29,30,31)$ by using Karnaugh map.
 - (b) Design an S-R flip flop with truth table by using only NAND gates. 8 + 4 = 12

B.TECH/AEIE/4TH SEM /AEIE 2201/2016

- 5. (a) Design a frequency divider where output frequency, f_0 is divided by 16 of clock frequency.
 - (b) Design a MODULO-8 synchronous counter and explain with output waveforms.

6 + 6 = 12

Group – D

- 6. (a) Design a ripple counter to start the count at zero and stop the count at 5 and start the count again from zero.
 - (b) Write short note on Ring counter.

7 + 5 = 12

- 7. (a) Write short note on Johnson counter.
 - (b) Implement the given functions using programmable logic array (PLA) $W(a,b,c) = \sum m(0,2), X(a,b,c) = \sum m(0,3,4), Y(a,b,c) = \sum m(3,4,5,7).$ 4 + 8 = 12

Group - E

- 8. (a) Compare between logic Families: TTL, ECL, and CMOS
 - (b) Write short notes on Successive-approximation type ADC and Binary weighted DAC.

6 + 6 = 12

- 9. (a) Implement the following logic functions by using PROM. $x = \sum m(0,1,3,7,9), y = \sum m(2,4,6,7,12)$
 - (b) Design A NAND gate using CMOS logic.

7 + 5 = 12

AEIE 2201

B.TECH/AEIE/4TH SEM /AEIE 2201/2016 2016

DIGITAL ELECTRONIC CIRCUITS (AEIE 2201)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternatives for the following:

 $10 \times 1 = 10$

			8			
(i)	 Which of the following statements does not describe an advantage of digital technology? (a) The values may vary over a continuous range (b) The circuits are less affected by noise (c) The operation can be programmed (d) Information storage is easy. 					
(ii)	 A full subtractor circuit requires (a) two inputs and two outputs (b) two inputs and three outputs (c) three inputs and one output (d) three inputs and two outputs. 					
(iii)	(r-1)'s complement of a number 'N' having 'n' digit is					
	(a) (r ⁿ -1)-N		(b) (r-1) ⁿ -N			
	(c) (r+1) ⁿ -N		(d) None of t	he above.		
(iv)	A flip-flop has (a) one stable state (c) two stable states		• •	(b) no stable states (d) none of the above.		
(v)	Decimal equivalent of the fractional binary number 0000.1010 is					
	(a) 0.625	(b) 0.50	(c) 0.55	(d) 0.10.		
AEIE 22	01	1				

AEIE 2201