REEN 5241

1.

Time Allotted : 3 hrs

Group - A (Multiple Choice Type Questions)

Choos	e the correct alt	ernative for the	following:	10 × 1 =
(i)	Steam reforming with CCUS will result in (a) Grey Hydrogen (c) Blue Hydrogen		ult in (b) Greer (d) Brow	n Hydrogen n Hydrogen.
(ii)	The temperature (a) 900°C	in the reformer fu (b) 700°C	rnace in steam r (c) 500°C	eforming is (d) 815°C
(iii)	What is the catho (a) Iron	de material used i (b) Nickel	n electrolytic Hy (c) Copper	drogen production? (d) Aluminium.
(iv)	Which of the following is not an example of a fuel cell?(a) Hydrogen-oxygen cell(b) Methyl-oxygen-alcohol cell(c) Propane-oxygen cell(d) Hexanone-oxygen cell.			
(v)	The fuel cell is co (a) fuel only (c) both fuel and	nsidered a battery oxidizer	in which is c (b) oxidiz (d) none	ontinuously replaced. zer of the mentioned
(vi)	Which of these fu (a) High tempera (c) Molten carbor	el cells operates at ture solid oxide fu n fuel cell	t high temperatu el cell (b) Alkalı (d) Phosj	ires and pressures? ine fuel cell phoric acid fuel cell.
(vii)	In presence of wh (a) Magnesium ox (c) Iron oxide	nich catalyst is H2 f kide	rom water gas a (b) Copp (d) Nicke	nd steam extracted? er oxide el.
(viii)	Catalytic reformin (a) 30-55 (c) 75-95	ng produces what j	percentage of hy (b) 45-7((d) 100-1	vdrogen?) 150.

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and

any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

M.TECH/RE/2ND SEM/REEN 5241/2022

HYDROGEN AND FUEL CELL TECHNOLOGY (REEN 5241)

Full Marks: 70

10

M.TECH/RE/2ND SEM/REEN 5241/2022

(ix)	A fuel cell is used to convert chemical energy into			
	(a) mechanical energy	(b) solar energy		
	(c) electrical energy	(d) potential energy.		

(x) Which of these gases or liquids are not used as source of hydrogen in fuel cells? (a) C_2H_6 (b) C_2H_2 (c) C_6H_6 (d) C_2H_5OH .

Group - B

2.	(a)	What are the differences between Grey, Blue and Green Hydrogen?
		[(CO1)(Analyse/IOCQ)]
	(b)	Why is water-gas shift reaction done in two stages for hydrogen production?
		[(CO1)(Analyze/IOCQ)]
	(c)	How can you avoid the problem of hydrogen storage in case of transportation of
		hydrogen to long distances? [(CO1)(Analyze/IOCQ)]
		4 + 5 + 3 = 12

3. (a) Explain, in brief, the electrolytic production of hydrogen.

(b) On what factors does the product composition of the partial oxidation process depend? [(CO1)(Analyse/IOCQ)]
 (c) Write a note on coal gasification. [(CO1)(Understand/IOCQ)]

6 + 2 + 4 = 12

Group – C

- 4. (a) What are the difficulties in the hydrogen storage using metal borohydrides?
 [(CO2)(Remember/LOCQ)]
 (b) Describe the current DOE target for the hydrogen storage.
 [(CO2)(Analyze/LOCQ)]
 [(CO2)(Anal
 - (c) Define the impact of the utilization of hydrogen on the environmental aspect. [(CO2,3)(Analyze/IOCQ)]

4 + 4 + 4 = 12

(a) Define Metal-Organic Framework (MOF). [(C01)(Understand/LOCQ)]
(b) How the MOF is used for the hydrogen storage? [(C01)(Understand/LOCQ)]
(c) Describe the use of hydrogen in for the various application to reduce the global warming. [(C01,C02)(Analyze/IOCQ)]
2 + 4 + 6 = 12

Group - D

6. (a) Define the advantages and disadvantages of the proton exchange membrane fuel cell. [(CO4)(Remember/LOCQ)]

5.

M.TECH/RE/2ND SEM/REEN 5241/2022

(b) Define the polarization curve of fuel cell and describe all the parameters with respect different losses. [(CO2)(Remember/LOCQ)]

6 + 6 = 12

- 7. (a) Describe the working principle of alkaline fuel cells.
 - [(CO3, 4)(Remember/LOCQ)]
 - (b) State the advantages and disadvantages of SOFC. [(CO3,4)(Understand/LOCQ)]
 - (c) Write the different names for the non-hydrogen fuel cells.

[(CO2,4)(Analyze/IOCQ)] 5 + 5 + 2 = 12

Group - E

8.	(a)	Describe the application of fuel cell in the station	nary and portable sector.	
	(b)	Describe the application of fuel cell in the transp	oort sector.	
			[(CO4,7)(Understand/LOCQ)]	
			6 + 6 = 12	
9.	(a)	Describe the backfire and pre-ignition of hydrog	gen.	
			[(CO1,7)(Remember/LOCQ)]	
	(b)	Define fuel carburetion method.	[(CO1,6,7)(Understand/LOCQ)]	
	(c)	Describe the emission curve for the hydrogen engine.		
			[(CO1,7)(Analyse/IOCQ)]	
			5 + 3 + 4 = 12	

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	64.58	34.42	0

Course Outcome (CO):

After the completion of the course students will be able to

- 1. The objective of the course is to provide comprehensive and logical knowledge of hydrogen production, storage, and utilization. In addition,
- 2. Ability to demonstrate knowledge of renewable energy technology.
- 3. Able to understand the role of nanotechnology in energy conversion.
- 4. Provide an understanding of various fuel cell technologies.
- 5. To build knowledge to design nano-systems, component or process as per need and specification.
- 6. To acquire knowledge layered Integration and performance for micro fuel cell systems.
- 7. To acquire knowledge about the different types of fuel cell and their application.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question