CONFIDENTIAL

: 2014-2015

Session

Paper Name : Advanced Mathematical Methods

HERITAGE INSTITUTE OF TECHNOLOGY

: AEIE

Paper Code : MATH5101

M.Tech 1st Semester Examination, 2014

Discipline

Full Marks: 70

CONFIDENTIAL

HERITAGE INSTITUTE OF TECHNOLOGY

M.Ie	ch 1 ^{ec} Semester Examination, 20	Session	: 2014-2015	
	Discipline	: AEIE		
Pape	r Code : MATH5101	Paper Name : Advar	ced Mathem	natical Methods
(vii)	The <i>duality gap</i> in LPP is (a) 0 (c) less than zero	(b) infinite (d) 1		
(viii)	If V and W are finite dimensional linear mapping, then (a) Nullity of T + rank of T = dim (c) Nullity of T + rank of T < dim	vector spaces over a fie V, (b) Nullity of T + ran V, (d) none of these.	Id F and T : k of T > dim V	$W \rightarrow W$ is a

(ix) Consider the following two bases of $E = \{(1,0,0), (0,1,0), (0,0,1)\}$ and $S = \{(1,0,1), (2,1,2), (1,2,2)\}$. Then the change-of-basis matrix P from the basis E to the basis S is

(a)	0	1	1		[1	0	0
	2	1	3	(b)	0	1	0
	4	2	2		0	0	1
(c)	[1	2	1]		2	1	3]
	0	1	2	(d)	0	1	-3
	1	2	2		_4	0	2

(x) The function $f(x, y) = x^2y + y^2 + 2y$ has (a) a maximum point, (b) a minimum point, (c) a saddle point, (d) none of these.

Group – B

- 2.(a) Examine if the set S is a subspace of \Re^3 , where $S = \{(x, y, z) \in \Re^3 : x = 0\}$.
- (b) Prove that, the set $S = \{(2,1,1), (1,2,1), (1,1,2)\}$ is a basis of \Re^3 .
- 3.(a) Determine whether or not the set of vectors $S = \{(1,1,1), (1,2,3), (2,-1,1)\}$ forms a basis of R^3 .
- (b) Apply the Gram-Schmidt orthogonalization process to find an orthogonal basis for the subspace U of R^4 spanned by S= {(1,1,1,1), (1,2,4,5), (1,-3,-4,-2)} 6+6=12

THE OF REAL

6+6=12

HERITAGE INSTITUTE OF TECHNOLOGY

Paper Code : MATH5101

4.(a) A mapping $T: \mathfrak{R}^3 \to \mathfrak{R}^3$ is defined by $T(x_1, x_2, x_3) = (x_1 + x_2 + x_3, 2x_1 + x_2 + 2x_3, x_1 + 2x_2 + x_3), (x_1, x_2, x_3) \in \Re^3.$ Show that T is a linear mapping.

- (b) Find Ker T and its dimension.
- 5.(a) Let V be the vector space of n-square real matrices. Let M be an arbitrary but fixed matrix in V. Let f: $V \rightarrow V$ be defined by f(A)=AM+MA, where A is any matrix in V. Show that f is linear.
- (b) Show that the functions f(t) = sint, g(t) = cost and h(t) = t from R into R is linearly independent.

Group – D

Solve the following non-linear programming problem using Lagrange multiplier 6. method:

> Maximize $f(x_1, x_2) = 2x_1 + x_2 + 10$ Subject to $x_1+2x_2^2=3$

Also find the effect of changing the right-hand side of the constraint on the optimum value of f. 8+4=12

7. Minimize $f = x_1^2 + x_2^2 + x_3^2 + 40x_1 + 20x_2$ $x_1 \ge 50$, $x_1 + x_2 \ge 100$, Subject to $x_1 + x_2 + x_3 \ge 150$

by applying Kuhn-Tucker conditions.

Session

CONFIDENTIAL

: 2014-2015

6+6=12

6+6=12

12

: AEIE

Discipline Paper Name : Advanced Mathematical Methods

Group – C

HERITAGE INSTITUTE OF TECHNOLOGY

M.Tech 1st Semester Examination, 2014
Discipline : AEIE
Paper Code : MATH5101
Paper Name : Advanced Mathematical Methods
Group - E
8.(a) Consider the following problem:
Maximize
$$z = x_1 + x_2 + 3x_3$$

 $3x_1 + 2x_2 + x_3 \le 3$,
Subject to $2x_1 + x_2 + 2x_3 \le 2$,
 $x_1, x_2, x_3 \ge 0$.
Solve the problem by Simplex method.
(b) Construct the dual of the following LPP:
Maximize $z = 3x_1 + 4x_2$,
 $x_1 + x_2 \le 12$,
 $2x_1 + 3x_2 \le 21$,
Subject to $x_1 \le 8$,
 $x_2 \le 6$,
 $x_1, x_2 \ge 0$.
10+2=12
9. Solve the following LPP using Big-M method:
Maximize $Z = x_1+2x_2+3x_3-x_4$

Maximize $Z = x_1+2x_2+3x_3-x_4$ Subject to $x_1+2x_2+3x_3=15$ $2x_1+x_2+5x_3=20$ $x_1+2x_2+x_3+x_4=10$

 $x_1 + 2x_2 + x_3 + x_4 - 1$ $x_1, x_2, x_3, x_4 \ge 0$

12