### CONFIDENTIAL

## HERITAGE INSTITUTE OF TECHNOLOGY

M.Tech 1<sup>st</sup> Semester Examination. 2014 Session : 2014-15

> Discipline : AEIE

Paper Code : AEIE5101 Paper Name : MICRO-ELECTRONIC DEVICES AND CIRCUITS

Time Allotted : 3 hrs

(a) V<sub>DD</sub>

(iii)

(c)  $V_{DD}-V_t$ 

The circuit given below

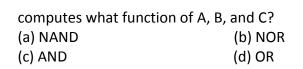
Figures out of the right margin indicate full marks.

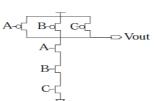
Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

#### Group – A

#### (Multiple Choice Type Questions)


—⊳Vout


(b) 0V

- Choose the correct alternative for the following: 1.
- The threshold voltage of an n-channel MOSFET can be increased by: (i)

(a)Increasing the channel dopant concentration

- (b) Reducing the channel dopant concentration
- (c) Reducing gate oxide thickness
- (d) Reducing the channel length
- (ii) In the circuit below, what is V<sub>out</sub> equal to?





(d) Not enough information

10 x 1=10



Full Marks: 70



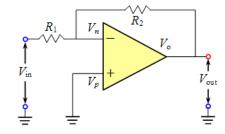


# HERITAGE INSTITUTE OF TECHNOLOGY

M.Tech 1<sup>st</sup> Semester Examination. 2014 Session : **2014-15** 

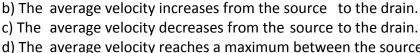
Discipline : AEIE

Paper Code : AEIE5101 Paper Name : MICRO-ELECTRONIC DEVICES AND CIRCUITS


- (iv) The extremely high input impedance of a MOSFET is primarily due to the (a)absence of its channel
  - (b) negative gate-source voltage
  - (c) depletion of current carriers

(a) positive

- (d) extremely small leakage current of its gate capacitor
- (v) What is the difference voltage output from an OpAmp if the inputs are an ideal in phase signal?
  - (a) the differential gain times twice the input signal
  - (b) the differential gain times the input signal
  - (c) the common-mode gain times twice the input signal
  - (d) the common-mode gain times the input signal
- (vi) An N-channel depletion mode MOSFET can be turned off by making VGS
  - (b)zero
  - (c) negative (d)none of the above
- (vii) MOSFET input resistance is typically of the order


(a)  $10^{10}$ - $10^{15}\Omega$  (b)  $10^{10}$ - $10^{12}\Omega$ (c)  $10^{10}$ - $10^{21}\Omega$  (d) none

(viii)



If  $R_1 = 10 \text{ k}\Omega$ , and  $R_2 = 30 \text{ k}\Omega$ , the input impedance of the circuit is (a)  $10\text{k}\Omega$  (b)  $40\text{k}\Omega$ (c) infinity (d) none of the above

- (ix) Voltage follower is a special case of \_\_\_\_\_\_.
  - a) inverting configuration
  - b) non-inverting configuration
  - c) difference configuration
  - d) integrator configuration



#### Group - B

- 2.(a) Explain with diagram the CMOS implementation of a clocked SR flip-flop using passtransistor and compare it with a standard CMOS flip-flop realization.
- (b) Describe the operation of a master-slave D flip-flop with the help of its circuit diagrams and two-phase non-overlapping clock wave forms.
  5 + 7= 12
- 3.(a) Perform small signal analysis on a MOS cascade amplifier without the load circuit and derive an expression for voltage gain and output resistance.
- (b) Design a MOS cascade amplifier current source to provide a current of 100 $\mu$ A and an output resistance of 500k $\Omega$ . Assume the availability of a 0.18 $\mu$ m CMOS technology for which V<sub>DD</sub>= 1.8V, V<sub>tp</sub>= -0.5V,  $\mu_pC_{ox}$ = 90 $\mu$ A/V<sup>2</sup> and V<sub>A</sub><sup>'</sup>= -5V/ $\mu$ m. Use  $|V_{ov}|$ = 0.3V and determine L and W/L for each transistor. 8

#### Group - C

- 4 (a) Describe how to convert a monostable multivibrator to an astable multivibrator using suitable circuit diagram?
- (b) For the circuit shown in Fig.1, let the op-amp saturation voltages be  $\pm 10V$ ,  $R_1=100k\Omega$ ,  $R_2=R=1M\Omega$  and C=0.01 $\mu$ F. Find the frequency of oscillation.

Fig.1 Page 3

7 + 5= 12



HERITAGE INSTITUTE OF TECHNOLOGY

d) The average velocity reaches a maximum between the source and the drain.

M.Tech 1<sup>st</sup> Semester Examination. 2014 Session : 2014-15 Discipline : AEIE

How does the average velocity of charge carriers vary with position along the

channel of a modern MOSFET under large drain to source voltage? a) The average velocity is constant from the source to the drain.

(x)

Paper Code : AEIE5101 Paper Name : MICRO-ELECTRONIC DEVICES AND CIRCUITS

# 100µA and

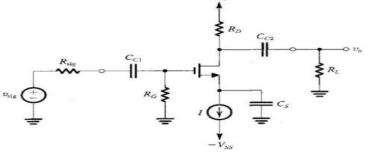
8 + 4= 12





# HERITAGE INSTITUTE OF TECHNOLOGY

M.Tech 1<sup>st</sup> Semester Examination. 2014 Session : 2014-15


> Discipline : AEIE

Paper Code : AEIE5101 Paper Name : MICRO-ELECTRONIC DEVICES AND CIRCUITS

- 5.(a) Perform analysis on a single OpAmp difference amplifier and derive an expression for its common and differential mode gains. Also comment on its differential input resistance.
- (b) It is required to connect a transducer having an open-circuit voltage of 1V and source resistance of  $1M\Omega$  to a load of  $1k\Omega$  resistance. Find the load voltage if the connection is done a) directly and b) through a unity gain voltage follower. 8 + 4= 12
- Group D 6.(a) Perform small signal analysis on the given NMOS amplifier circuit, shown in following figure. Find an expression for output impedance and voltage gain.

- (b) Implement a switched capacitor filter circuit using OpAmp and derive an expression for its output resistance.
- 7.(a) Explain the implementation of a monostable multivibrator using OpAmp and also derive an expression for time period of oscillation.
- Compare a bipolar current mirror with MOS mirror. What is bias compensation in a (b) bipolar mirror and how does it improve current transfer ratio. 7 + 3 + 2 =

12

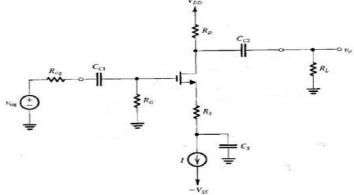




#### 5 + 7 = 12



# HERITAGE INSTITUTE OF TECHNOLOGY


M.Tech 1<sup>st</sup> Semester Examination. 2014 Session : 2014-15

> Discipline : AEIE

Paper Code : AEIE5101 Paper Name : MICRO-ELECTRONIC DEVICES AND CIRCUITS

#### Group - E

8 (a) Perform small signal analysis on the common source amplifier, also find draw the equivalent circuit and deduce expressions for voltage gain, input and output impedances.



(b)

- Consider a CMOS inverter fabricated in a 0.18µm process for which V<sub>DD</sub>=1.8V,  $V_{tn}=|V_{tp}| = 0.5V$ ,  $\mu_n=4\mu_p$ , and  $\mu_nC_{ox}=300\mu A/V^2$ . In addition,  $Q_N$  and  $Q_p$  have L=0.18 $\mu$ m and (W/L)<sub>n</sub>=1.5.
  - Find  $W_p$  that results in  $V_M = V_{DD}/2 = 0.9V$ . What is the silicon area utilized by i) the inverter in this case.
  - ii) For the matched case above, find the values of  $V_{OH}$ ,  $V_{OL}$ ,  $V_{IH}$ ,  $V_{IL}$  and noise margins  $NM_L$  and  $NM_H$ . For  $V_i = V_{IL}$ , find out the  $V_o$ .
  - For the matched case above, find the values of output resistance for two iii) inverter output states.

9.(a) Implement the function Y = AB + A B using CMOS realization for OAI gates.

- (b) Write short notes on any *two* of the following:
  - a) Widlar current source
  - b) Delay-Power product
  - c) Input bias and offset currents in an OpAmp
  - d) CMOS inverter circuit.

6 + (2x3) =12

6 + 6 = 12