# SIGNALS & SYSTEMS (ELEC 2202)

**Time Allotted : 3 hrs** 

Full Marks: 70

Figures out of the right margin indicate full marks.

## Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

## **Group – A** (Multiple Choice Type Questions)

| 1.  | Choos  |                                                                                                                                                                           | 10 × 1 = 10                                                         |                           |                                        |                                 |                            |
|-----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------|----------------------------------------|---------------------------------|----------------------------|
|     | (i)    | The value of the i<br>(a) $\frac{1}{a^2}$                                                                                                                                 | ntegral $\int_{-\infty}^{\infty} \delta(at)$<br>(b) $\frac{1}{ a }$ | $dt$ is (c) $\frac{1}{a}$ |                                        | (d) $\frac{-1}{a}$              |                            |
|     | (ii)   | If a signal f(t) has<br>(a) 2E                                                                                                                                            | energy E, the en<br>(b) E/4                                         | ergy of<br>(c) E          | the signal <i>f</i> (<br>/2            | (0.5 <i>t</i> ) is ea<br>(d) E. | qual to                    |
|     | (iii)  | Integration of a step signal gives<br>(a) ramp signal<br>(c) parabolic signal                                                                                             |                                                                     |                           | (b) impulse signal<br>(d) gate signal. |                                 |                            |
|     | (iv)   | If a periodic signal has an even symmetry, the Fourier series contains(a) only sine terms(b) only cosine terms(c) constant and cosine terms(d) both sine and cosine terms |                                                                     |                           |                                        |                                 | ntains<br>s<br>sine terms. |
|     | (v)    | Fourier transform of a gate signal is a<br>(a) sine wave<br>(c) unit step signal                                                                                          |                                                                     |                           | (b) sinc function<br>(d) ramp signal.  |                                 |                            |
|     | (vi)   | In force-voltage analogy, mass is analogous to(a) resistance(b) inductance(c) capacitance(d) conductance.                                                                 |                                                                     |                           |                                        |                                 |                            |
|     | (vii)  | The unit step response of the system $G(s) = \frac{1}{0.2s+1}$ reaches 63.2% of its final value after<br>(a) 20 sec (b) 0.2 sec (c) 2 sec (d) 1 sec.                      |                                                                     |                           |                                        |                                 |                            |
|     | (viii) | ) The magnitude response of a second order system has a resonant peak if damping ratio is                                                                                 |                                                                     |                           |                                        |                                 |                            |
| ELE | C 2202 | (a) 1<br>(c) less than 0.70                                                                                                                                               | 7                                                                   | 1                         | (b) 0.707<br>(d) less tha              | ın 1.                           |                            |

(ix) For a two input, 2 state and one output system, the dimension of C matrix is (a)  $1 \times 2$  (b)  $2 \times 1$  (c)  $2 \times 2$  (d)  $2 \times 3$ .

| (x) | A second order system has $A = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$ | $\binom{0}{-2}$ , the system is |  |
|-----|-----------------------------------------------------------------------|---------------------------------|--|
|     | (a) underdamped                                                       | (b) overdamped                  |  |
|     | (c) critically damped                                                 | (d) undamped.                   |  |

### Group - B

- 2. (a) Examine whether signal x(t) = r(t) is an energy or a power signal or none. [(CO1)(Analyse/IOCQ)]
  - (b) Sketch the signal x(t) = r(t+3) r(t+2) r(t-2) + r(t-3). [(C01)(Understand/LOCQ)]
  - (c) Sketch the even and odd component of a signal  $x(t) = Ae^{-at}u(t)$ . [(CO1)(Understand/LOCQ)]
  - (d) Determine the output of a system whose impulse response h(t) = u(t-3) for an input x(t) = u(t-1) using graphical convolution method. [(CO2)(Evaluate/HOCQ)] 3 + 2 + 2 + 5 = 12
- 3. (a) Find the exponential Fourier series for the signal *x*(*t*) shown in Fig.1.[(CO1)(Analyze/IOCQ)]



(b) Find the Fourier transform of the signal x(t) shown in Fig.2. Also sketch the amplitude and phase spectra of the signal. [(CO1)(Analyze/IOCQ)]



6 + 6 = 12

Group - C

- 4. (a) What do you mean by aliasing phenomenon? How we can prevent aliasing? [(CO3)(Remember/LOCQ)]
  - (b) Find the z-transforms and ROCs of the following signals. (i)  $x(n) = [(\frac{2}{3})^n]u(n) + [(\frac{1}{2})^n]u(-n-1)$ (ii)  $g(n) = A \sin(w_0 n) u(n)$

**ELEC 2202** 

(iii) 
$$x(n) = n(\frac{1}{4})^n u(n).$$
 [(CO3)(Analyze/IOCQ)]  
3 + (3 × 3) = 12

5. (a) Find the inverse z-transforms of the following functions. Using partial fraction method

(i) 
$$X(z) = \frac{z^2 + z}{(z-1)(z-3)}$$
, ROC  $|z| > 3$   
(ii)  $X(z) = \frac{1+3z^{-1}}{1+3z^{-1}+2z^{-2}}$ , ROC  $|z| > 2$ . [(CO3)(Analyze/IOCQ)]  
(b) Determine the unit step response of the system whose input (*x*(*n*)) and output

(y(n)) relationship is given by the difference equation  $y(n) + \frac{1}{3}y(n-1) = x(n)$ . [(CO3)(Evaluate/HOCQ)] (4 + 4) + 4 = 12

# Group – D

- (a) Define Linear Time invariant system? [(CO4)(Understand/LOCQ)]
   (b) Develop the electrical analogous circuit of the mechanical system shown in
  - Fig.3 using force-voltage and force-current analogy. [(CO4)(Evaluate/HOCQ)]



2 + (5 + 5) = 12

7. (a) What do you mean by the transfer function of a system?

[(CO5)(Understand/LOCQ)]

(b) A system is described by a differential equation,

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 16 y(t) = 16 x(t)$$

Where y(t) is the output and x(t) is the input to the system. Find out the

- (i) transfer function of the system
- (ii) natural frequency of oscillation and damping ratio of the system
- (iii) unit step response of the system
- (iv) peak time, over shoot and settling time of the system
- (v) sketch the unit step response of the system. [(CO5)(Analyze/IOCQ)]

2 + 10 = 12

# Group – E

8. (a) Obtain the state space representation of an armature controlled DC servo motor. [(CO6)(Analyze/IOCQ)]

#### **ELEC 2202**

6.

(b) Develop the state variable model of the system whose transfer function is given by  $G(s) = \frac{s^2+3s+4}{s^5+3s^4+7s^3+9s^2+11s+13}$ . [(CO6)(Analyze/IOCQ)]

9. The state variable model of a system is given by,

 $\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \text{ and } y = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ 

Evaluate the

- (i) transfer function of the system.
- (ii) state transition matrix.
- (iii) zero input response if  $x_1(0) = 0$  and  $x_2(0) = 1$ .
- (iv) state response due to unit impulse input.
- (v) time response y(t).

| Cognition Level         | LOCQ | IOCQ  | HOCQ  |
|-------------------------|------|-------|-------|
| Percentage distribution | 9.38 | 58.33 | 32.29 |

#### **Course Outcome (CO):**

After the completion of the course students will be able to

- CO1: Understand the concept of signals and analyze the spectral content in periodic and aperiodic signals.
- CO2: Understand the impulse response of a system, convolution of two signals and its application to dynamic systems.
- CO3: Understand the concept of sampling of a signal; obtain the output of a system using z transform.
- CO4: Describe the mathematical model of physical systems and understand the concept of BIBO stability.
- CO5: Possess a basic understanding of the concept of frequency response and time response of dynamic systems and analyze their implications.
- CO6: Describe the mathematical model of dynamical systems in state-space form and its time domain solution using the concept of "state transition matrix".

\*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question

<sup>[(</sup>CO6)(Evaluate /HOCQ)] (3 + 3 + 2 + 3 + 1) = 12