(vii)

FIELD THEORY (ELEC 2204)

Time Allotted : 3 hrs

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- Choose the correct alternative for the following: 1.
 - (i) Ohm's law is obeyed by
 - (a) conduction current
 - (c) both conduction and convection current

(ii) Which one is called as 'continuity equation'?

- (a) $\nabla E = -\frac{\partial \rho_v}{\partial t}$ (c) $\nabla V = -\frac{\partial \rho_v}{\partial t}$
- Skin depth is denoted by (iii) (a) $1/\sqrt{\pi f\mu\sigma}$
 - (d) α/β (c) $1/\beta$

Two identical coaxial circular coils carry the same current I but in opposite (iv) directions. The magnitude of magnetic field B at a point on the axis midway between the coils is (a) zero (b) twice that produced by one coil

- (c) the same as that produced by one coil (d) half that produced by one coil.
- (v) Example of a scalar field is (a) electric field intensity (b) magnetic field intensity (c) electric potential (d) all of these.
- (vi) Line integral of a magnetic field (a) depends upon the path taken (c) constant
 - The magnetic boundary conditions are (a) $H_{T1} = H_{T2}$, $B_{N1} = B_{N2}$ (b) $H_{T1} = H_{T2}$, $\mu_1 B_{N1} = \mu_2 B_{N2}$ (c) $\mu_1 H_{T1} = \mu_2 H_{T2}$, $B_{N1} = B_{N2}$ (d) None.

Full Marks: 70

 $10 \times 1 = 10$

- (b) convection current
- (d) none of them.

(b) independent of the path

(b) $\nabla J = -\frac{\partial \rho_v}{\partial t}$ (d) $\nabla D = -\frac{\partial \rho_v}{\partial t}$

(b) $\sqrt{\pi f \mu \sigma}$

(d) none.

B.TECH/EE/4TH SEM/ELEC 2204/2022

- For an infinite sheet of current the magnetic field (B) above the sheet is (viii) (a) $\mu K/2$ (b) µK (c) Zero (d) μ].
- A differential surface formed in cylindrical coordinates (ix) (a) $d\rho dz$ (b) $(\rho d\phi) dz$ (C) $d\rho (\rho d\phi)$ (d) All
- (x) For a lossless line propagation constant (γ) is given by (b) $j\omega\sqrt{\frac{L}{C}}$ (c) $j\omega\sqrt{C}$ (d) $j\omega\sqrt{L}$ (a) $j\omega\sqrt{LC}$

Group-B

- (a) Express the vector $A = r \cos \emptyset \hat{a}_r + r \hat{a}_{\theta}$ into Cartesian coordinates. 2.
 - What is the gradient of a function $G = x^2 + y^3 + z^4$ at the point (4, 5, 6)? [(CO2)(Remember/LOCQ)] (b)
 - Examine that the vector $\vec{B} = (x + 5y)\hat{a}_x + (y 3x)\hat{a}_y + (x 2z)\hat{a}_z$ is solenoidal (c) [(CO2)(Analyse/IOCQ)] or not.

5 + 4 + 3 = 12

- Transfer the vector $A = 3\hat{a}_x + 4\hat{a}_y + 5\hat{a}_z$ into cylindrical coordinates at point (2, 3. (a) [(CO1)(Apply/IOCQ)] $\pi/2,-1$).
 - Prove Divergence Theorem for the vector field: $\vec{A} = (x^3 y^3 z^3)\hat{a}_x + (y^3 x^3 z^3)\hat{a}_y + (z^3 y^3 x^3)\hat{a}_z$ for a rectangular region defined by $0 \le x \le 2$, $0 \le 1$ (b) $y \le 3, 0 \le z \le 4.$ [(CO2)(Evaluate/HOCQ)]

6 + 6 = 12

Group - C

Show the derivation of the electric flux density \vec{D} with the help of Gauss's Law at 4. (a) any point due to point charge. [(CO3)(Understand/LOCQ)]

Solve to get the charge density at $(5, \frac{\pi}{4}, 2)$ and the total charge enclosed by the (b) cylinder of radius 2m with $-2 \le Z \le 2$ m. Given: $\vec{D} = z\rho Cos^3 \varphi \hat{a_z} C/m^2$. [(CO3)(Apply/IOCQ)]

- Assume potential distribution in a given region of free space as $V = 10y^3 +$ (c) $20x^2 + 5z^2$, to obtain \overline{E} at (5,4,7). [(CO3)(Analyse/IOCQ)]
- Develop the relationship between electric field intensity and electric potential. (d) [(CO3)(Create/HOCQ)]

3 + 3 + 3 + 3 = 12

Explain the continuity equation. [(CO3) (Understanding/LOCQ)] 5. (a) Develop boundary conditions of electric field for dielectric-dielectric boundary. (b) [(CO3)(Apply/IOCQ)]

B.TECH/EE/4TH SEM/ELEC 2204/2022

(c) A homogeneous dielectric ($\varepsilon_r = 3.5$) fills region $1(x \le 0)$ while region 2 ($x \ge 0$) is free space. (i) If $\overrightarrow{D_1} = 12\widehat{a}_x - 10\widehat{a}_y + 4\widehat{a}_z \text{ nC/m}^2$ find $\overrightarrow{D_2}$ (ii) If $E_2 = 10$ V/m and $\theta_2 = 60^\circ$, Determine E_1 . Take θ_1 and θ_2 as the angles made by E_1 and E_2 respectively with the normal to the interface. [(CO3) (Evaluate/HOCQ)] 3 + 5 + 4 = 12

Group - D

6. (a) A conducting triangular loop carrying a current of 3 A is located close to an infinitely long straight conductor with a current of 10 A, as shown in Fig.1. Calculate the total force on the loop. [(CO4)(Evaluate/HOCQ)]

- (b) Given that $B = 5\hat{a}_x 5\hat{a}_z$ wb/m, find the force it exerts on a 0.5 m conductor on the y-axis with a current 3 A in the $-\hat{a}_y$ direction. [(CO4)(Understand/LOCQ)]
- (c) What is the physical significance of $\nabla \cdot \overline{B} = 0$. [(CO4)(Understand/LOCQ)] 6 + 4 + 2 = 12
- 7. (a) A conducting filament carries current *I* from A (0,0,a) to point B(0,0,b). Show that at point P(x, y, 0),

$$H = \frac{I}{4\pi\sqrt{x^2 + y^2}} \left[\frac{b}{\sqrt{x^2 + y^2 + b^2}} - \frac{a}{\sqrt{x^2 + y^2 + a^2}} \right] \hat{a}_{\emptyset}$$
[(CO4) (Underst

(b) Given that $\vec{H}_1 = \hat{a}_x + 8\hat{a}_y + 5\hat{a}_z$ A/m in region $y - x - 4 \le 0$, where $\mu_1 = 6\mu_0$. Calculate \vec{H}_2 in region $-x - 4 \ge 0$, where $\mu_2 = 3\mu_0$. [(CO4)(Apply/IOCQ)] 6 + 6 = 12

Group - E

8. (a) Explain displacement current and displacement current density.

[(CO5)(Evaluate/HOCQ)]

- (b) What are the Maxwell's equations in integral form? [(CO5)(Remember/LOCQ)]
- (c) A uniform plane wave in a good conductor with $\sigma = 10^{-3}$ S/m, $\varepsilon = 75\varepsilon_0$ and $\mu = \mu_0$ is having a frequency of 9 kHz. Identify attenuation constant, phase constant, intrinsic impedance, wave length and velocity of wave.

[(CO6) (Apply/IOCQ)] 3 + 3 + 6 = 12

B.TECH/EE/4TH SEM/ELEC 2204/2022

- Prove that in lossless dielectrics the \overrightarrow{E} and \overrightarrow{H} of the plane wave are in time 9. (a) [(CO6) (Evaluate/HOCQ)] phase with each other. [(CO6) (Understand /LOCQ)]
 - Explain what is skin depth and skin effect. (b)
 - Simplify the inconsistency in Ampere's law. Compare how it is rectified by (c) [(CO5)(Analyze/IOCQ)] Maxwell.
 - Assume a circuit conducting loop lies in the *xy*-plane as shown in Fig.2. The loop (d) has a radius of 0.2m and resistance R = 5 Ω . If $B = 80sin100t\hat{a}_z$ mWb/m², find [(CO5)(Analyze/IOCQ)] the current.

Fig.2

3 + 3 + 4 + 2 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	29.17	36.45	34.38

Course Outcome (CO):

After the completion of the course students will be able to

- CO1: Apply knowledge of different co-ordinate systems for field analysis problems.
- CO2: Apply different techniques of vector calculus to analyze electromagnetic fields to reach substantiated conclusions.
- CO 3: Solve static electric field problems for different engineering applications by using vector calculus.
- CO4: Solve static magnetic field problems for different engineering applications by using vector calculus.
- CO5: Apply the knowledge of Maxwell's equation in solving wave propagation problems.
- CO6: Understand and analyze the concepts of electromagnetic waves.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCO: Higher Order Cognitive Question