EM THEORY & TRANSMISSION LINES (ECEN 2203)

Time Allotted : 3 hrs

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

(i)	In a certain medium E=10 $e^{-3y} \cos(10^8 t - 3y)a_x V/m$ what type of medium is it		
	(a) Free space	(b) Lossless dielectric	
	(c) Lossy dielectric	(d) Both (a) and (b).	

- (ii) The intrinsic impedance of free space is in ohm is (a) 489 (b) 265 (c) 192 (d) 377.
- (iii) If an electromagnetic wave is incident obliquely at the surface of a dielectric medium 2 (μ_2, ϵ_2) from dielectric medium 1 (μ_1, ϵ_1), the average angle of incidence and the critical angle are θ_i and θ_c respectively. The total internal reflection occurs for

(a) $\epsilon_1 > \epsilon_2$, $\theta_i < \theta_c$	(b) $\epsilon_1 < \epsilon_2, \theta_i < \theta_c$
(c) $\epsilon_1 < \epsilon_2$, $\theta_i > \theta_c$	(d) $\epsilon_1 > \epsilon_2$, $\theta_i > \theta_c$

(iv) Which one of the following conditions will not guarantee a distortionless transmission line?
(a) R = 0, G = 0
(b) LG = RC
(c) R ≫ ωL, G ≫ ωC
(d) R ≪ ωL, G ≪ ωC.

(v) Which condition satisfies for good conductor? (a) $\sigma/\omega\epsilon >> 1$ (b) $\sigma\omega\epsilon > 1$ (c) $\sigma/\omega\epsilon <<1$ (d) $\sigma\omega\epsilon < 1$.

(vi) If a line is terminated in an open circuit, then VSWR (Voltage Standing Wave Ratio) is
 (a) 0
 (b) 1
 (c) ∞
 (d) -1

(vii) The skin effect is a phenomenon observed in
(a) Insulators
(b) Dielectrics
(c) Conductors
(d) Semiconductors.

Full Marks : 70

 $10 \times 1 = 10$

- (viii) The leakage current in the transmission lines is referred to as the
 (a) Resistance
 (b) Radiation
 (c) Conductance
 (d) Polarisation
- (ix) A lossy, isotropic and charge free medium means (a) $\sigma = 0, \epsilon$ is not constant and $\rho = 0$ (b) $\sigma = 0, \epsilon$ is constant and $\rho = 0$ (c) $\sigma \neq 0, \epsilon$ is not constant and $\rho = 0$ (d) $\sigma \neq 0, \epsilon$ is constant and $\rho = 0$
- In a dielectric medium, electromagnetic wave with different wavelength experiences different velocity due to
 (a) diffraction
 (b) refraction
 (c) dispersion
 (d) all of the above.

Group - B

- 2. (a) Find the expression for motional emf for moving loop in static B field.
 - [(CO1)(Remember/LOCQ)]
 - (b) A 30-cm by 40-cm rectangular loop rotates at 130 rad/s in a magnetic field 0.06 Wb/m² normal to the axis of rotation. If the loop has 50 turns, determine the induced voltage in the loop. [(CO1)(Analyze/IOCQ)]
 - (c) Express Maxwell's time varying equations in integral form.

[(CO1)(Remember/LOCQ)]

5 + 4 + 3 = 12

3. (a) Derive expression for the continuity equation. Derive the modified Ampere's circuit law. What is the origin of the 'displacement current'?

[(CO2)(Remember/LOCQ)]

(b) A parallel-plate capacitor with plate area of 5 cm² and plate separation of 3 mm has a voltage $50 \sin 10^3 t$ V applied to its plates. Calculate the displacement current assuming $\epsilon = 2\epsilon_0$. [(CO2)(Analyze/IOCQ)]

(2+3+1)+6=12

Group - C

- 4. (a) Derive the Maxwell's wave equation and find the expression of propagation constant γ . [(CO2)(Remember/LOCQ)]
 - (b) A wave, within a nonmagnetic medium with $\epsilon = 3\epsilon_0$, is represented as $E = 200e^{-0.05z} \cos(160 \times 10^6 \pi t - \beta z) \hat{a}_x$. Determine
 - (i) refractive index of the medium,
 - (ii) intrinsic impedance of the medium,
 - (iii) phase constant β , and the corresponding magnetic field.

[(CO2)(Evaluate/HOCQ)] 6 + 6 = 12

5. (a) Determine the transmission and reflection coefficients for light incidents normally at an Interface of two dielectrics. [(CO3)(Understand/LOCQ)]

(b) In free space $(z \le 0)$, a plane wave with $H_i = 10 \cos(10^8 t - \beta z) \hat{a}_x \text{ mA/m}$ incidents normally on a lossless medium $(\epsilon = 2\epsilon_0, \mu = 8\mu_0)$ in region $z \ge 0$. Determine E_r , for the reflected wave. [(CO3)(Evaluate/HOCQ)]

6 + 6 = 12

Group - D

- 6. (a) A telephone line has the following parameters: R = 40 Ω/m , G = 400 μ S/m, L = 0.2 μ H/m, C = 0.5 nF/m
 - (i) If the line operates at 10 MHz, calculate the characteristic impedance Z_{o} and velocity u.
 - (ii) After how many meters will the voltage drop by 30 dB in the line?

[(CO3)(Analyze/IOCQ)]

- (b) Explain the statement-'A lossless line is a distortionless line but it is not viceversa'. [(CO3)(Understand/LOCQ)]
- (c) If a short circuit load is connected at the end of a transmission lines then explain how input impedance vary with length of transmission line.

[(CO3)(Understand/LOCQ)] 5 + 3 + 4 = 12

- 7. (a) Explain requirements of stub matching. [(CO4)(Remember/LOCQ)]
 - (b) Define standing wave ratio and find relation between SWR and reflection coefficient. [(CO4)(Remember/LOCQ)]
 - (c) A lossless transmission line with $Z_0 = 50\Omega$ is 30m long and operates at 2MHz. The line is terminated with a load $Z_L = 60 + j40\Omega$. If u = 0.6c on the line, Find
 - (i) Reflection coefficient
 - (ii) Standing wave ratio
 - (iii) Input impedance.

[(CO4)(Analyze/IOCQ)] 3 + 4 + 5 = 12

Group - E

8. (a) The magnetic field of certain antenna at very large distance *r* is given as

$$\mathbf{H} = j \frac{I_0 dl\beta}{4\pi r} \sin \theta \ e^{j\beta r} \ \hat{a}_{\phi}.$$

Find the corresponding electric field. Also find the time-averaged radiated power in free space. [(CO5)(Remember/LOCQ)]

(b) Define radiation intensity $U(\theta, \phi)$ and establish a relation between average radiation intensity U_{ave} and total time averaged radiated power P_{rad} . Define directive gain $G_d(\theta, \phi)$, hence show that the time averaged power for an isotropic antenna is $P_t = \frac{P_{rad}}{4\pi r^2}$. [(CO5)(Analyse/IOCQ)]

(3+3) + (2+1+3) = 12

9. (a) Prove that the directive gain of the Hertzian dipole is $G_d(\theta, \phi) = 1.5 \sin^2 \theta$. [(CO5)(Analyze/IOCQ)] (b) Euclein how entering array affects radiation pattern [(CO5)(Understand /LOCO)]

(b) Explain how antenna array affects radiation pattern. [(CO5)(Understand/LOCQ]

ECEN 2203

(c) State Frii's transmission equation for antenna propagation.

[(CO5)(Understand/LOCQ)]

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	55.21	32.29	12.50

Course Outcome (CO):

After going through this course, the students will be able to:

- 1. Apply their pre-requisite knowledge of Electrostatics and Magneto statics.
- 2. Comprehend Electromagnetic wave propagation in different mediums.
- 3. Understand different electromagnetic phenomena associated with Transmission Lines.
- 4. Design of Impedance Matching Networks for two wire Transmission Lines.
- 5. Develop the ability to analyze the radiation characteristics of antenna configurations and identify respective areas of application.
- 6. Understand pattern synthesis and analysis in linear antenna array.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question