ADVANCED NUMERICAL METHODS (MATH 2202)

Time Allotted : 3 hrs.

Full Marks: 70

 $10 \times 1 = 10$

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

(i)	In Gauss-Jordan metho AX = B is converted to (a) diagonal matrix (c) upper triangular matrix	od, the given system of another system $CX = 1$	f linear equations represe Y where C is (b) identity matrix (d) lower triangular m	sented by atrix.
(ii)	Taking $h = 1$, the value (a) $e^n e^x$ (c) $(e - 1)^n e^x$	of $\Delta^n e^x$ is	(b) $(e + 1)^n e^x$ (d) $(e^n - 1)e^x$.	
(iii)	A system of linear eq coefficient matrix of the (a) symmetric and negative (c) diagonal and negative	uation can be solved e system of linear equat ative definite (b) ve definite (d)	by Cholesky factorizat tion is symmetric and positive o diagonal and positive def	ion if the lefinite finite.
(iv)	In an iterative method, (a) number of variables (c) ease of using the op	the amount of computa s erators	ation depends on the (b) round off errors (d) degree of accuracy	
(v)	The interval which c $\begin{bmatrix} 3 & 2 & 1 \\ 2 & 5 & 2 \\ 1 & 2 & 3 \end{bmatrix}$ (a) [0, 9]	ontains all the eigen (b)[0,6]	values of the symmetr (c)[1,9]	ic matrix (d) [1,6].
(vi)	The eigenvalue of the $X = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ is given by	matrix $C = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$ co	orresponding to the eig	en vector
	(a) 0	(b) 1	(c) 2	(d) 3.
(vii)	If $y = a_0 x^n + a_1 x^{n-1} +$ (a) $a_0 (n-1)! h^n$ (c) $a_0 n! h^n$	$a_2 x^{n-2} + \dots + a_{n-1} x - a_{n-1} x $	$ a_n, then Δn y =? (b) a_1 n! hn-1 (d) a_1 n! hn. $	

MATH 2202

B.TECH/ECE/4TH SEM/MATH 2202/2022

- (viii) Which one is not correct? (a) $E = 1 + \Delta$ (c) $E y_x = y_{x+h}$
- (ix) $[x_0, x_1, x_2] = ?$ (a) $\frac{[x_1, x_2] - [x_0, x_1]}{x_0 - x_2}$ (b) $\frac{[x_0, x_2] - [x_0, x_1]}{x_1 - x_2}$ (c) $\frac{[x_0, x_1] - [x_1, x_2]}{x_1 - x_2}$ (d) $\frac{[x_1, x_2] - [x_0, x_1]}{x_2 - x_0}$
- (x) Out of the following algorithms, which one has the slowest rate of convergence?
 (a) Dichotomous search
 (b) Fibonacci search
 (c) Golden search
 (d) Interval halving.

Group – B

2. (a) Use Gauss-Seidel method to solve the given system of equations correct up to three decimal points:

$$20x + y - 2z = 173x + 20y - z = -182x - 3y + 20z = 25.$$

Take the initial approximation as: (x, y, z) = (0, 0, 0).

(b) $E^{-1} = 1 + \nabla$

(d) $E^{-1}y_x = y_{x-h}$

(b) What do you mean by $|| \cdot ||_1$ norm of a matrix? Using that norm, find the condition number of the following system of linear equations.

$$2x - y + z = 2$$

$$x + z = 2$$

$$3x - y + 4z = 6$$

[(MATH2202.1, MATH2202.4, MATH2202.6)(Understand/LOCQ)]

$$6 + 6 = 12$$

3. (a) Use Gauss-Elimination method to solve the system of equations:

$$2x_1 + x_2 - 3x_3 - x_4 = -1$$

$$4x_1 + 2x_2 - x_3 + 2x_4 = 7$$

$$6x_1 - 4x_2 - 2x_3 + 4x_4 = 4$$

$$x_1 + x_2 + x_3 - x_4 = 2.$$

(MATH2202.1, MATH2202.4, MATH2202.6)(Apply/IOCQ)]
 (b) Can we solve the following system of linear equations using Cholesky factorization method? Justify your answer.

$$2x - y = 1$$

 $-x + 2y - z = 0$
 $-y + 2z = 1$
[(MATH2202.1, MATH2202.4, MATH2202.6)(Understand/LOCQ)]
 $6 + 6 = 12$

Group – C

4. (a) Suppose the eigenvalues of a 4×4 symmetric matrix *A* are to be computed. Because of a data entry error, every entry of *A* has 0.0001 added to it, leading to

MATH 2202

B.TECH/ECE/4TH SEM/MATH 2202/2022

another matrix \hat{A} ? What is the error bound for $|\lambda_k - \hat{\lambda_k}|$ as given by the Stability corollary? How does the error bound change if the matrix was of order 5 × 5? Justify.

[(MATH2202.3, MATH2202.4, MATH2202.6)(Understand/LOCQ)] (b) Compute five iterations of the power method to approximate a dominant eigenvector of $A = \begin{bmatrix} -2 & -3 \\ 6 & 7 \end{bmatrix}$ starting with initial approximation $X_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Using Rayleigh quotient, approximate the dominant eigenvalue of *A*. [(MATH2202.3, MATH2202.4, MATH2202.6) (Understand/LOCQ)]

4 + 8 = 12

5. Find the Singular Value Decomposition (SVD) of the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. [(MATH2202.3, MATH2202.4, MATH2202.6) (Apply/IOCQ)] 12

Group – D

6. (a) Compute $\int_0^{\pi/2} \sqrt{\cos \theta} \, d\theta$ by (i) Simpson's 1/3rd rule, (ii) Weddle's rule,

taking $h = 0.26179 = 15^{\circ}$. [(MATH2202.2, MATH2202.6)(Apply/IOCQ)]

(b) Find f(x) as a polynomial in x by using the Newton's divided difference interpolation formula for the following table:

x	-1	0	1	2	3	4	
f(x)	-16	-7	-4	-1	8	29	
					1 /7		

[(MATH2202.2, MATH2202.6)(Remember/LOCQ)] (3 + 3) + 6 = 12

7. (a) <u>Given the values</u>

x	5	7	11	13	17
f(x)	150	392	1452	2366	5202

Evaluate f(9) using Newton's divided difference formula.

[(MATH2202.2, MATH2202.6) (Evaluate/HOCQ)]

(b) Obtain the cubic spline corresponding to the interval [2,3] for the following table:

x	0	1	2	3	
f(x)	1	2	33	244	
with $M = 0 M = 0$					

with $M_0 = 0$, $M_3 = 0$. Hence evaluate f(2.5).

> [(MATH2202.2, MATH2202.6) (Apply/IOCQ)] 5 + 7 = 12

Group – E

8. Execute Fibonacci search algorithm to minimize $f(x) = x^4 - 13x^3 + 62x^2 - 79x$ over [0,2] taking 6 functional evaluations. [(MATH2202.5, MATH2202.6) (Apply/IOCQ)] 12

B.TECH/ECE/4TH SEM/MATH 2202/2022

9. Use Dichotomous Search algorithm to minimize $f(x) = x^4 - 14x^3 + 60x^2 - 70x$ over [0, 2], tolerance limit being 0.3. Consider $\epsilon = 0.001$.

[(MATH2202.5, MATH2202.6) (Apply/IOCQ)] 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	31.25%	57.29%	11.46%

Course Outcome (CO):

After the completion of the course students will be able to

MATH2202.1 Analyze certain algorithms, numerical techniques and iterative methods that are used for solving system of linear equations.

MATH2202.2 Implement appropriate numerical methods for solving advanced engineering problems dealing with interpolation, integration and differentiation.

MATH2202.3 Apply the knowledge of matrices for calculating eigenvalues and eigenvectors and their stability for reducing problems involving Science and Engineering

MATH2202.4 Develop an understanding to reduce a matrix to its constituent parts in order to make certain subsequent calculations simpler.

MATH2202.5 Apply various optimization methods for solving realistic engineering problems.

MATH2202.6 Compare the accuracy and efficiency of the above-mentioned methods.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question