B.TECH/CSE/ECE/6TH SEM/MATH 3221/2022

COMPUTATIONAL MATHEMATICS (MATH 3221)

Time Allotted : 3 hrs.

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choos	Choose the correct alternative for the following:				
	(i)	The Eulerian number (a) 5	<i>E</i> (5, 4) is (b) 4	(c) 1	(d) 9.	
	(ii)	The Stirling number o (a) 1	of the second kind (or (b) 2	Stirling subset num (c) 6	(d) $S_2(3, 2)$ is	
	(iii)	The second Bernoulli (a) $\frac{1}{6}$	number B_2 is (b) $-\frac{1}{2}$	(c) 0	(d) $-\frac{1}{30}$	
	(iv)	The greatest common (a) 3	divisor of the Fibonac (b) 2	ci numbers F ₂₀ and (c) 1	l F ₂₁ is (d) 5	
	(v)	The remainder in the (a) 3	division of 1!+2!+3!+4!+5! (b) 4	++120! by 10 is (c) 1	(d) 2	
	(vi)	C(6, 0) - C(6, 1) + C(6, 2) (a) 64	-C(6, 3) + C(6, 4) - C(6, 5) (b) 0	+C(6, 6) = (c) 6	(d) 1.	
	(vii)	Which one of the follo (a) 2	owing is a quadratic res (b) 5	sidue <i>mod</i> 11? (c) 6	(d) 7	
	(viii)	Let $\lfloor x \rfloor$ denote the greating (a) $3 < c < 4$	atest integer less than o (b) c <1	or equal to x. If $c > 0$ (c) $1 < c < 2$	and $\lfloor \sqrt[40]{c} \rfloor = 0$, then (d) $c > 4$	
	(ix)	The generating functi (a) $\frac{ax}{(1-ax)^2}$	on of the sequence na^n (b) $\frac{ax}{(1-ax)^3}$	= (c) $\frac{ax}{(1-ax)}$	(d) $\frac{1}{(1-ax)^3}$	
	(x)	The coefficient of x^{10} (a) 11	in $(1 + x + x^2 + \cdots)^2$ (b) 12	is (c) 10	(d) 9.	

MATH 3221

Group – B

- 2. (a) Let T_n denote the minimum number of moves that will transfer *n* disks from one peg to another in the puzzle called the Tower of Hanoi. Prove that $T_n \le 2T_{n-1} + 1$, for n > 0. Explain why equality may not hold.
 - (b) Find the sum of the arithmetic progression $\sum_{0 \le j \le n} (a+b_j)$ by showing that it is equal

to $(n+1)(2a+bn) - \sum_{0 \le j \le n} (a+b_j)$. [(MATH3221.1, MATH3221.5, MATH3221.6)(Analyse/IOCQ)] 7 + 5 = 12

- 3 (a) Solve the recurrence relation $Q_0 = \alpha; Q_1 = \beta; Q_n = \frac{1+Q_{n-1}}{Q_{n-2}}, \text{ for } n > 1$. Assume that $Q_n \neq 0 \text{ for all } n \ge 0$. [(MATH3221.1, MATH3221.5, MATH3221.6)(Analyze/IOCQ)]
 - (b) Calculate $\Delta^4(x^{\underline{m}})$ and $\nabla^2(x^{\overline{m}})$. [(MATH 3221.1, MATH 3221.5, MATH 3221.6)(Understand/LOCQ)] **6 + 6 = 12**

Group – C

4. (a) Prove the following recurrence relation for $S_1(n, k)$, the Stirling numbers of the first kind.

 $S_1(n,k) = (n-1)S_1(n-1,k) + S_1(n-1,k-1)$, integer n > 0. [(MATH 3221.2, MATH 3221.5, MATH 3221.6)(Apply/IOCQ)]

- (b) (i) State the definition of the Euler numbers *E*(*n*, *k*) and the recurrence relation satisfying them. Calculate *E*(4,0), *E*(4, 1), *E*(4, 2), *E*(4, 3), *E*(4, 4).
 - (ii) Prove that E(n, k) = E(n, n-1-k), integer n > 0. Use this result to calculate E(15, 14). [(MATH3221.2, MATH3221.5, MATH3221.6)(Evaluate/HOCQ)]

6 + 6 = 12

5. (a) Let F_n denote the Fibonacci numbers. Prove that

(i) $F_{n+5} = 5F_{n+1} + 3F_n$, (ii) $F_{n-4} = -3F_{n+1} + 5F_n$. [(MATH3221.2, MATH3221.5, MATH3221.6)(Apply/IOCQ)]

(b) Prove that $z \cot z = \sum_{n \ge 0} (-4)^n B_{2n} \frac{z^{2n}}{(2n)!}$ [(MATH 3221.2, MATH 3221.5, MATH 3221.6)(Evaluate/HOCQ)] (3 + 3) + 6 = 12

Group – D

6. (a) Let *n* be any positive integer and *x* be any real number. Prove that a necessary and sufficient condition for the result $\lfloor nx \rfloor = n \lfloor x \rfloor$ is $\{x\} < \frac{1}{n}$, where $\{x\} = x - \lfloor x \rfloor$ is

the fractional part of *x*. [(MATH3221.3,MATH3221.5,MATH3221.6)(Evaluate/HOCQ)]

MATH 3221

B.TECH/CSE/6TH SEM/MATH 3221/2022

(b) Find the remainder in the division of $4^{901} + 3^{602} + 29!$ by 31. State every result that you use.

[(MATH 3221.3, MATH 3221.5, MATH 3221.6) (Remember/LOCQ)] 6 + 6 = 12

- 7. (a) Use the Euclidean algorithm to find a solution, in integers, of the equation 34x + 21y = 3. [(MATH3221.3, MATH3221.5, MATH3221.6)(Apply/IOCQ)]
 - (b) Prove that $n^{n/2} \le n! \le \frac{(n+1)^n}{2^n}$, where *n* is a positive integer. [(MATH 3221.3, MATH 3221.5, MATH 3221.6)(Evaluate/HOCQ)]

5 + 7 = 12

Group – E

8. (a) In how many ways can a person climb up a flight of *n* steps if the person can skip at most one step at a time? If we assume that the person may take either 1, 2, *or* 3 steps in each stride, find a recurrence relation for the number of ways the person can climb *n* steps.

[(MATH3221.4, MATH3221.5, MATH3221.6)(Evaluate/HOCQ)]

(b) Prove that the generating function for the Fibonacci numbers is $\frac{z}{1-z-z^2}$.

[(MATH 3221.3, MATH 3221.5, MATH 3221.6) (Apply/IOCQ)] 6 + 6 = 12

9. (a) Solve the recurrence relation $a_n - 7a_{n-1} + 10a_{n-2} = 0$ for $n \ge 2$.

[(MATH3221.4, MATH3221.5, MATH3221.6) (Create/HOCQ)]

(b) Find the form of a particular solution to $a_n - 5a_{n-1} + 6a_{n-2} = n^2 4^n$ for $n \ge 2$. [(MATH 3221.4, MATH 3221.5, MATH 3221.6) (Understand/LOCQ)]

6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	26.04	35.42	38.54

Course Outcome (CO):

After the completion of the course students will be able to

MATH3221.1. Identify patterns in data in the form of recurrences and using the latter to evaluate finite and infinite sums.

MATH3221.2. Explain combinatorial phenomena by using binomial coefficients, generating functions and special numbers.

MATH3221.3. Solve computational problems by applying number theoretic concepts such as primality, congruences, residues etc.

MATH3221.4. Analyze the properties of networks by invoking graph theoretic concepts such as connectivity, matchings, colouring etc.

MATH3221.5. Combine the concepts of recurrences, sums, combinatorics, arithmetic and graph theory in order to comprehend computational methods.

MATH 3221

В.ТЕСН/CSE/6^{тн} SEM/MATH 3221/2022

MATH3221.6. Interpret mathematically the algorithmic features of computational situations.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question