TRANSPORT PHENOMENA (CHEN 2202)

Time Allotted : 3 hrs

1.

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- Choose the correct alternative for the following: (i) Momentum flux for i=j is given by ______ (a) $\phi_{ij} = p + \rho u_i u_j$ (b) $\phi_{ij} = p + \tau_{ij} + \rho u_i u_j$ (c) $\phi_{ij} = \delta_{ij} p + \tau_{ij} + \rho u_i u_j$ (d) $\phi_{ij} = \tau_{ij} + \rho u_i u_j$
 - (ii) Comparing the non-dimensional form of the Navier-Stokes' equation with its dimensional one momentum diffusivity can be said as equivalent to ______.
 (a) Reynold's number
 (b) Product of Reynold's number and apparent viscosity
 (c) Inverse of the Reynold's number
 (d) Product of inverse of the Reynold's number and apparent viscosity
 - (iii) The Prandlt number is defined as (a) $\mu/\rho C_p$ (b) $\rho/C_p k$ (c) $\mu C_p/k$ (d) $k/\rho C_p$
 - (iv) If the film thickness of flowing Newtonian fluid over a flat plate is δ , then the velocity profile is given by _____

(a)
$$u = u_{max} \left[1 + \left(\frac{x}{\delta} \right)^2 \right]$$

(b) $u = u_{max} \left[1 - \left(\frac{x}{\delta} \right)^2 \right]$
(c) $u = u_{max} \left(\frac{x}{\delta} \right)^2$
(d) $u = \frac{u_{max}}{\left(\frac{x}{\delta} \right)^2}$

- (vi) Reynolds' Analogy is defined as (a) St = f/2 (b) St = Re.Pr (c) St .Pr = f/3 (d) $Sc = Pr^{1/3}$

Full Marks: 70

 $10 \times 1 = 10$

(vii) Using Von-Karman integral method the thickness of momentum boundary layer is equal to ______

(a)
$$\frac{4.64}{\sqrt{Re_x}}$$
 (b) $\frac{2.32}{\sqrt{Re_x}}$ (c) $\frac{1}{\sqrt{Re_x}}$ (d) $\frac{9.28}{\sqrt{Re_x}}$

- (viii) For a heterogeneous reaction the Thiele modulus is ______ for a pore diffusion controlled reaction.
 (a) more than 1 (b) less than 1 (c) equal to 1 (d) either (a) or (c)
- (ix) Dimensional analysis of equation of energy (Heat transfer) results in generating

 (a) Prandlt number and Reynolds number
 (b) Prandlt number and Biot number
 (c) Biot number and Reynolds number
 - (d) Biot number and Courant number.
- (x) The unit of diffusivity is
 (a) Length²/time²
 (c) Time/length²

(b) Length/time²(d) Length²/time.

Group - B

- 2. (a) What is difference between molecular stress tensor and momentum flux? Elaborate with mathematical expression. [(CO2)(Remember/LOCQ)]
 - (b) For $v_x = -\frac{1}{2}bx$, $v_y = -\frac{1}{2}by$ and $v_z = 0$ velocity distributions, draw a meaningful sketch showing the flow pattern. Then find all the components of τ and ρvv for the Newtonian fluid. The parameter b is a constant. [(CO2)(Apply/IOCQ)]
 - (c) Shear stress is given by $\tau_{ij} = -\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$. Explain, both the force and momentum

flux directions are included in τ_{ij} to calculate velocity gradient.

3. (a) What is the role of Kronecker delta in molecular stress tensor?

[(CO2)(Remember/LOCQ)]

(b) Estimate the viscosity of the following gas mixture at 1 atm and 293 K from the given data on the pure components at the same pressure and temperature.

Species	Mole fraction	Molecular weight	Viscosity (Pa.s)
CO2	0.133	44	14.62×10-6
02	0.039	32	20.31×10 ⁻⁶
N_2	0.828	28	17.54×10 ⁻⁶
			F(0 0 0) ()

[(CO2) (Apply/IOCQ)]

(c) Mathematically justify, that at the condition, when collision diameter and intermolecular distance will be equal the Lennard-Jones potential energy becomes zero. [(CO2)(Evaluate/HOCQ)]

2 + 6 + 4 = 12

^{[(}CO2)(Evaluate/HOCQ)]2 + 6 + 4 = 12

Group - C

- 4. (a) Cite one practical example for each of Coutte and Creeping flow.
 - [(CO2)(Remember/LOCQ)]
 (b) Show that the average velocity across a cross section of a falling film flowing over a flat plate (making angle θ with the vertical) of length 'L unit' is two-third of the maximum velocity over the plate. [(CO2)(Create/HOCQ)]
 - (c) An oil has a kinematic viscosity of 2×10^{-4} m²/s and a density of 0.8×10^{3} kg/m³. If we want to have a falling film of thickness of 2.5 mm on a vertical wall, what should the mass rate of flow the liquid be? [(CO2)(Apply/IOCQ)]

2 + 6 + 4 = 12

5. (a) How the Reynold's stress terms differ from molecular stress?

[(CO2)(Understand/LOCQ)]

(b) Using shell momentum balance, develop the differential equation to obtain the velocity profile within the fluid medium (fig. 2). ω is the rotational speed of the stirrer arrangement. R₁ is the stirrer radius and R₂ is the cylinder radius. R₂ >> R₁. Assume the fluid is the Newtonian fluid. [(CO2) (Create/HOCQ)]

(c) "No slip condition assumption is purely dependent on the geometry of the control volume" – Justify the appropriateness of the statement.

[(CO2)(Evaluate/HOCQ)]

3 + 6 + 3 = 12

Group - D

- 6. (a) For a hot flowing fluid (T_b) inside a circular pipe (of radiation R) attach to circular fins (Length L), Find out the temperature profile along the fins. Assume ambient temperature T α . [(CO4)(Apply/IOCQ)]
 - (b) Derive the conduction resistances for a composite wall. Thermal conductivity of wall material is K. [(CO4)(Remember/LOCQ)]

8 + 4 = 12

- 7. (a) Derive the velocity profile and the temperature profile for a flowing Newtonian incompressible fluid between two parallel plates separated by a distance L. Assume the flow in laminar. [(CO4)(Create/HOCQ)]
 - (b) Explain why the Grashof number is significant for free convection while the Nusselt number is significant to forced convection? [(CO5)(Analysis/IOCQ]

10 + 2 = 12

Group - E

- 8. (a) In case with component flux determination during mass transfer, why one requires to understand the advective mass transfer along with the molecular mass transfer? Explain mathematically. [(CO3)(Evaluate/HOCQ)]
 - (b) What is the purpose of calculating mass transfer average velocity in two different ways one is the mass average velocity and the other one is the molar average velocity? [(CO3)(Understand/LOCQ)]
 - (c) A droplet of liquid A, of radius r_1 is suspended in a stream of gas B. We postulate that there is a spherical stagnant gas film of radius r_2 surrounding the droplet. The concentration of A in the gas phase is x_{A1} at $r = r_1$ and X_{A2} at the outer edge of the film, $r = r_2$. By a shell balance, show that for steady-state diffusion r^2N_{Ar} is a constant within the gas film, and set the constant equal to $r_1^2N_{Ar1}$ at the droplet surface also show that the result leads to the following equation for x_A , $r_1^2N_{Ar1} = -\frac{cD_{AB}}{1-x_A}r^2\frac{dx_A}{dr}$. [(CO3)(Apply/IOCQ)]

3 + 3 + 6 = 12

- 9. (a) Write down the von Kármán mass balance equation. Why this integral method is called the approximate solution for boundary layer thickness measurement? [(CO5)(Remember/LOCQ, Evaluate/HOCQ)]
 - (b) Derive the Reynolds analogy using the non dimensional conductive diffusive equations for momentum, heat and mass transfer. [(C01)(Create/H0CQ)]

(2+3)+7=12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	18.75	33.33	47.92

Course Outcome (CO):

After the completion of the course students will be able to

- 1. The students will be able to identify the inherent analogy between different property transport processes.
- 2. The students will be able to describe the concept of momentum transport for different flow geometry.
- 3. The students will be able to describe the concept of mass transport for different flow geometry.
- 4. The students will be able to describe the concept of energy transport for different flow geometry.
- 5. The students will be able to solve the flow problems relating all three different transport processes.
- 6. The students will be able to describe the concept of boundary layer and analyze the flow problem based on the comparative survey on the boundary layer thickness.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question