BIOREACTOR DESIGN AND ANALYSIS (BIOT 3202)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- Choose the correct alternative for the following: 10 × 1 = 10
 (i) During exponential phase, growth rate is ______
 (a) same as generation time (b) reciprocal of generation time (c) time required for population to double (d) rate of doubling population.
 - (ii) What is meant by "k_La"?
 - (a) Volumetric mass transfer coefficient
 - (b) Henry's law coefficient
 - (c) Volumetric oxygen transfer coefficient
 - (d) Volumetric Solute transfer coefficient.
 - (iii) The cellular productivity in a continuous stirred tank fermenter (CSTR) increases with an increase in the dilution rate and reaches a maximum value. If the dilution rate is increased beyond the maximum point, the productivity will

 (a) decrease abruptly
 (b) increase
 (c) increase drastically
 (d) be zero.
 - (iv) The approximate doubling time of a microbial culture where specific growth rate is 0.35/hr. is
 (a) one hour
 (b) two hour
 (c) three hour
 (d) six hour.
 - (a) one nour (b) two nour (c) three nour (d) six nour.
 - (v) Monod model is an equation of the following types
 (a) linear
 (b) nonlinear
 (c) hyperbolic
 (d) parabolic.
 - (vi) A bubble column used for aerobic fermentation is best modelled by
 (a) plug flow
 (b) stirred tank
 (c) dispersion model
 (d) plug flow with axial dispersion.
 - (vii) Perfusion reactor is used for(a) vaccine formation(c) alcohol production
- (b) animal cell culture
- (d) biomass production.

- (viii) A non-ideal reactor is characterized by(a) Residence time distribution(c) Schmidt number
- (b) Peclet number
- (d) sherwood number.
- (ix) The best method to control Bioreactor operating system is
 (a) P I control system
 (b) PID control system
 (c) PD control system
 (d) none of these.
- (x) A batch reactor is characterised by
 (a) residence time distribution
 (b) variation in extent of reaction and properties of the reaction mixture with time
 (c) variation in reactor volume
 - (d) very low conversion.

Group-B

2. The steady state biomass and substrate concentration in a chemostat operation is given below. If So = 700 mg/L, calculate μ_{max} and Ks, growth yield coefficient (Y'_{x/s} growth) and maintenance coefficient (m)

Dilution rate D (hr ⁻¹)	S (mg/L)	X (mg/L)
0.3	45	326
0.25	41	328
0.20	16	340
0.12	8	342
0.08	3.8	344

[(CO6)(Calculate/HOCQ)]

12

3. Lethal agents are added to a stirred tank to kill organisms in a medium. Do concentration upon addition of lethal agent is recorded and following data obtained.

t (min)	1	2	2.5	3	4	5	
DO (gm/m ³)	1	3	4	5	6.5	7.2	
			1 2 2 1	1	F (222)(2	1 1 .	/-

If saturation oxygen concentration is 9 gm/m³, Calculate K_La. [(CO2)(Calculate/IOCQ)] **12**

Group - C

4. The reaction of sulphuric acid with diethylsulfate in aqueous solution at 23 °C is given below.

```
H_2 SO_4 + (C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>SO<sub>4</sub> → 2C<sub>2</sub>H<sub>5</sub>SO<sub>4</sub> H
Initial conc. of H<sub>2</sub>SO<sub>4</sub> and C<sub>2</sub>H<sub>5</sub>SO<sub>4</sub> are each 5.5 mol/L. Find a rate equation for this
Reaction with the help of data given below:
Time (min)----- 0 41 55 96 146 194 267 368 410 infinite
C<sub>2</sub>H<sub>5</sub>SO<sub>4</sub> H-----0 1.18 1.63 2.75 3.76 4.31 4.86 5.32 5.42 5.8 (mol/L)
[(CO2)(Analyze/IOCQ)]
```

5.	(a) Find the overall order of the irreversible reaction $2H_2 + 2NO \rightarrow N_2 + 2H_2O$ from the following data using equimolar amounts of hydrogen and nitric oxide in closed vessel:							
		Total pressure, mm Hg	200	240	280	320	360	
		Half-life, seconds	265	186			67	
			-00	100	110		4)(Calculate	·/IOC0)]
	(h) D	erive first order rate equa	ation and e	vnlain t	he result			, 1000
	(0) D	enve mise order rute equ		spium e			nember/LO	(0)
					I.		-	9 + 3 = 12
							-	, , , , = 12
			Grou	p - D				
6.	(a)	Explain axial dispersion				Γιςο	3)(Analyze	/10001
0.	(b)	Tracer data given below				[[CU	5)(Allaly2C	/IOCQ)]
	(D)	t (min) 0	1 3	4	7	9	12	14
		$C (gm/m^3)$ 0	1 8	10	4	2.2	0.6	0.0
		Determine the fraction to 7 minutes in the vess	of material	-		ctor that	has spent b 5)(Analyze/	between 4
6.	(a)	What do you understan	d by the ter	m R T I) (signifi	cance of l	RTD)?	
	ĊĴ	5	5				nember/LO	CO)]
	(b)	The conc. reading given into a closed Vessel.	i below rep	resent a			,	
			5 10			25 3	0 35	
		C _{pulse} (gm/lit.) 0	3 5	5	4	2 1	0.0	
	This vessel is to be used as a reactor for the decomposition of a liquid "A" A \rightarrow Products, $-r_A = K C_A$, $K = 0.307 \text{ min}^{-1}$						Α"	
		Estimate the fraction of	the reactar	nt uncor	nverted i	n the real	reactor.	
						[(CO	5)(Analyse/	'HOCQ)]
								3 + 9 = 12

Group - E

8. A culture of E. Coli was grown on lactose in a Air lift reactor (mixed flow reactor) (V=1 L) using various flow rates of a $C_{A0} = 160 \text{ mg lactose/lot feed}$. The following results Were obtained:

v, L/hr	C _A , mg/L	Cell conc., arbitrary
0.2	4	15.6
0.4	10	15
0.8	40	12
1.0	100	6
Find a rate	equation to represent this growt	h. [(CO3)(Analyse/HOCQ)]

12

9. With the help of clean diagram explain the operation of Air Lift Reactor (ALR) And Bubble Column Reactor (BCR). [(CO3)(Remember/LOCQ)]

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	18.75	45.16	35.48

Course Outcome (CO):

After completing the course, the students will be able to:

- 1. Develop basic concept of reaction engineering.
- 2. Understand basic concepts of bioreactor design and analysis.
- 3. Understand the basic operating principles of bioreactors.
- 4. Interpret batch reactor data with reference to basic reactor design for a single reaction ideal reactor.
- 5. Analyze non-ideal flow pattern with reference to residence time distribution (RTD) and dispersion numbers (D/UL)
- 6. Analyze basic cell growth data to verify Monod model.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question