


MAY 2021

CODEN: ICHTEU 28 (3) 243-378 (2021) ISSN: 0971-457X (Print); 0975-0991 (Online) ijct@niscair.res.in

http://nopr.niscair.res.in

Indian Journal of
Chemical
Technology

Published by

CSIR-National Institute of Science Communication And Information Resources

New Delhi, INDIA in association with

Indian National Science Academy, New Delhi, INDIA

Indian Journal of Chemical Technology www.niscair.res.in; http://nopr.niscair.res.in

VOLUME 28 **CODEN: ICHTEU** **NUMBER 3**

MAY 2021

ISSN: 0971-457X(Print); 0975-0991 (Online)

CONTENTS

_					
-D	1	72	0	rs	
	и	D	e		١

Optimization of process conditions to improve copper adsorption capacity of raw and treated Algerian bentonite: Characterization, kinetics and equilibrium study Mohamed Ghrissi Bouaziz*, Leila Youcef, Oussama Kheliel & Mohamed Charif Benalia	249
Natural carbohydrate gums based hydrogels Divya Balodhi, Khushbu, Sudhir G Warkar, Archana Rani & Rajinder K Gupta*	262
Coupling system of silver carbonate nanoparticles and bismuth oxyiodide nanosheets with enhanced photocatalytic properties Xianyi Lv, Dongfang Zhang* & Jiaxun Wang	274
Simultaneous quantification of Darunavir and Ritonavir in human plasma and pharmacokinetic study by LC MS/MS Amarnath*, Anupam Kumar Srivastava Suresh C Ameta & Rakshit Ameta	285
Comparative studies of removal of hazardous dyes, methylene blue (MB) and malachite green (MG) from solutions by low cost activated carbon Uma, Astha Pandey, Yogesh Chandra Sharma* & B Saleh	297
Comparative study of environmental impact of three-leather process production by life cycle analysis Sarra Mahdi, Mohamed-Zine Messaoud-Boureghda* & Hamouche Aksas	305 ••
Adsorptive column studies for removal of acid orange 7 dye using bagasse fly ash Sunil Deokar, Himanshu Patel, Priyanka Thakare, Sanjay Bhagat, Vidyadhar V Gedam & Pranav Pathak*	319
Adsorption of Cd(II) ions from aqueous solution using fruits peel as cost effective adsorbents Swarnabala Jena	328
Cure kinetics and thermodynamics of polyurethane network formation based on castor oil based polyester polyol and 4,4'-diphenyl methane diisocyanate Remya Balakrishnan*, Lity Alen Varghese & S K Manu	336
An efficient synthesis, invitro and insilco evaluation of new pyrazole and isoxazole derivatives as anti-inflammatory agents Kumaraswamy Gullapelli*, Ravichandar Maroju & Ramchander Merugu	343

Influence of asphaltene inhibitors on asphaltene deposition in the porous media Arnab Mandal, Vikas Mahto*, Subodh Purohit & M C Nihalani			
Formulation development and characterization of lamotrigine-salicylic acid crystalline product: A strategy to improve oral release of drug for better management of epilepsy Rudra Narayan Sahoo, Asuprita Patel, Bhabani Sankar Satapathy & Subrata Mallick	356		
Empirical optimization of corrosion rate for magnesium-chromium composites Sakshi Singh* & Nathi Ram Chauhan	363		
Trihexyltetradecylphosphonium bis(Trifluoromethylsulfonyl) imide as inhibitor for 6063 aluminium alloy corrosion in physiological solution B Seiti, A Alinj*, K Xhanari & D Topi	369		
Authors for correspondence are indicated by (*).			
and the state of the second state of the second sec			