MATHEMATICS - I (MATH 1101)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the			rnative for the follow	ollowing: 10	
	(i)	If <i>A</i> be a square m (a) symmetric ma (c) skew-symmet	natrix, then $(A - A^T)$ is atrix cric matrix	(b) identity n (d) null matri	natrix ix.
	(ii)) Assume $X = [x_1, x_2,, x_n]^T$ is an n-tup $V = XX^T$ (a) has rank zero (c) is orthogonal		the non-zero vector then the $n \times n$ matrix (b) has rank one (d) has rank n	
	(iii)	If the vector f solenoidal, then t (a) -5	ield $\vec{F} = (2x^2y + yz)$ he value of <i>a</i> is (b) 6	$\hat{i} + (xy^2 - xz^2)\hat{j} + (ax^2)\hat{j}$	$(xyz - 2x^2y^2)\hat{k}$ be
	(iv)	Which one of the (a) $\sum_{n=1}^{\infty} \frac{1}{n^4}$	following is a diverger (b) $\sum_{n=1}^{\infty} \frac{1}{n^2}$	it series? (c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n}}$	(d) $\sum_{n=1}^{\infty} \frac{1}{2^n}$
	(v)	Integrating factor (a) <i>x</i>	$\int of \frac{dx}{dy} + \frac{x}{y \log y} = \frac{2}{y}$ is (b) $\log x$	(c) log <i>y</i>	(d) log(log <i>y</i>)
	(vi)	Which one of the following equation is exact differential equation? (a) $(x^2 + 1)dx - xydy = 0$ (b) $xdy + (3x - 2y)dx = 0$ (c) $2xydx + (2 + x^2)dy = 0$ (d) $x^2ydy - ydx = 0$			
	(vii)	If $u = \sin^{-1}\left(\frac{x}{y}\right) + \cos^{-1}\left(\frac{y}{x}\right)$, then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = ?$			
		(a) $\sin^{-1}\left(\frac{x}{y}\right) + \cos^{-1}$	$\begin{pmatrix} y \\ x \end{pmatrix}$	(b) $2\sin^{-1}\left(\frac{x}{y}\right)$	
		(c) 0		(d) $\cos^{-1}\left(\frac{y}{x}\right)$	

MATH 1101

B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1ST SEM/MATH 1101 (BACKLOG)/2020

(viii) If
$$f(x, y) = 0$$
 then $\frac{dy}{dx}$ is equal to
(a) $-\frac{f_x}{f_y}$ (b) $\frac{f_x}{f_y}$ (c) $\frac{f_y}{f_x}$ (d) $-\frac{f_y}{f_x}$

- (ix) The value of $\iint_R dx dy$, where *R* being the triangular region having vertices at (0,0), (2,0) and (1,1) is (a) 0.5 (b) 1 (c) 0.2 (d) 0.3
- (x) The series $\frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \cdots$ is (a) convergent (b) divergent (c) oscillatory (d) conditionally convergent

Group – B

- 2. (a) Determine the rank of the matrix
 - $\begin{bmatrix} 2 & -1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6 \end{bmatrix}$
 - (b) Evaluate the following determinant by using Laplace's expansion taking minor of order two.
 - $\begin{vmatrix} 2 & 0 & 3 & 4 \\ 0 & 1 & 0 & 2 \\ 5 & -1 & 0 & 1 \\ 1 & 0 & 4 & 3 \end{vmatrix}$
 - (c) If λ is a non-zero eigen value of a matrix, then show that $1/\lambda$ is an eigen value of A^{-1} .

4 + 5 + 3 = 12

- 3. (a) Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$. Hence find A^{-1} .
 - (b) Determine the values of a and b for which the system of equation x+2y+3z = 6 x+3y+5z = 9 2x+5y+az = b has (i) no solution, (ii) unique solution, (iii) infinite number of solutions.

6 + 6 = 12

Group - C

4. (a) Test the convergence of the series: $1 + \frac{2}{5}x + \frac{6}{9}x^2 + \frac{14}{17}x^3 + \cdots (x > 0)$

MATH 1101

B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1st SEM/MATH 1101 (BACKLOG)/2020

(b) Find the directional derivative of the scalar function $f(x, y, z) = x^2 + xy + z^2$ at the point A(1, -1, -1) in the direction of the line AB where B has co-ordinates (3,2,1).

- 5. (a) Test the convergence of the infinite series $\sum_{n=1}^{\infty} \frac{\cos n\pi}{n^2+1}$
 - (b) Find the equation of the tangent plane to the surface $4z = x^2 y^2$ at the point (3,1,2).
 - (c) Show that, if $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$, then $\nabla r^n = nr^{n-2}\vec{r}$ where n is a constant.

$$5 + 4 + 3 = 12$$

Group – D

- 6. (a) Obtain the differential equation of the family of parabolas each of which has a latus rectum 4*a* and whose axes are parallel to the x-axis.
 - (b) Solve the following differential equation by using the method of variation of parameter $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = \frac{1}{1+e^{-x}}$.

$$6 + 6 = 12$$

7. (a) Solve:
$$3x^4p^2 - xp - y = 0$$

(b) Solve the following differential equation by using D- operator $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x \sin x$.

$$6 + 6 = 12$$

Group – E

8. (a) Verify Green's theorem in a plane for $\oint_C (y - \sin x) dx + \cos x dy$, where C represents the triangle with vertices $(0,0), (\pi/2, 0), (\pi/2, 2)$.

(b) Show that
$$\lim_{(x,y)\to(0,0)} \frac{x^2 y^4}{(x^2+y^4)^2}$$
 does not exists.

(c) If
$$x = uv$$
, $y = \frac{u-v}{u+v}$, then find $\frac{\partial(u,v)}{\partial(x,y)}$.
6+3+3=12

9. (a) Change the order of integration $\int_0^1 \int_{x^2}^{2-x} xy \, dy \, dx$ and hence evaluate.

(b) If
$$u = (x^2 + y^2)^{2/3}$$
, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{4}{9}u$.
6 + 6 = 12

MATH 1101

B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1ST SEM/MATH 1101 (BACKLOG)/2020

Department & Section	Submission Link		
BACKLOG ALL	https://classroom.google.com/c/MjA00Tk4NDc2MDI0/a/MjY1MTk5Mjk wMTcx/details		