B.TECH/ECE/7TH SEM/ECEN 4102/2020 CODING & INFORMATION THEORY (ECEN 4102)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following: **10** × **1** = **10**

(i)	Entropy of a random variable is				
	(a)0	(b)1	(c) Infinite	(d) Cannot be determined.	
(ii)	Block codes are generated using (a) Generator polynomial			(b) Generator matrix	
	(c) Gene	rator polync	omial & matrix	(d) None of the mentioned.	
(iii)	What are the conjugates of α^3 in GF (2 ³)?				
	(a) α^6 and	$d \alpha^5$		(b) α^5 and α^4	
	(c) α^3 and	$d \alpha^4$		(d) α^4 and α^6 .	
(iv)	For a Hamming distance of 5, how many errors can be detected?				
	(a) 2	(b)3	(c)4	(d) 5.	
(v)	What is the hamming weight for X= 1011101?				
	(a)4	(b)5	(c)1	(d) 7.	
(vi)	What is the order of the field element α^{12} of GF (2 ⁴)?				
	(a) 2	(b)3	(c)4	(d)5.	
(vii)	For decoding in convolution coding, in a code tree,				
	(a) Diverge upward when a bit is 0 and diverge downward when the bit is 1				
	(b) Diverge downward when a bit is 0 and diverge upward when the bit is 1				
	(c) Diverge left when a bit is 0 and diverge right when the bit is 1				
	(d) Diverge right when a bit is 0 and diverge left when the bit is 1.				
ECEN 4102			1		

B.TECH/ECE/7TH SEM/ECEN 4102/2020

(viii) A cyclic code can be generated using

- (a) Generator polynomial
 - (b) Generator matrix
 - (c) Generator polynomial and generator matrix
 - (d) None of the above.
- (ix) Viterbi algorithm performs ______ decoding of convolutional codes.
 - (a) Maximum likelihood (b) Maximum a posteriori
 - (c) Minimum square (d) Minimum mean square.
- (x) What will be the amount of information if $P(xi) = \frac{1}{4}$? (a)1bit (b)2bits (c)3bits (d)4 bits.

Group - B

- 2. (a) Why is Huffman code called an optimum code?
 - (b) A DMS has five symbols x1, x2, x3, x4 and x5 with P(x1)=0.4, P(x2)=0.19, P(x3)=0.16, P(x4)=0.15 and P(x5)=0.1. Construct a Shanon Fano code for the source and calculate the code efficiency.
 - (c) What is conditional entropy?

3 + (5 + 2) + 2 = 12

3. (a) Given a binary channel shown in the figure.

- i) Find the channel matrix of the channel.
- ii) Find $P(y_1)$ and $P(y_2)$ when $P(x_1) = P(x_2) = 0.5$
- iii) Find the joint probabilities $P_{(x1,y2)}$ and $P_{(x2,y1)}$ when $P_{(x1)} = P_{(x2)} = 0.5$
- (b) An analog signal band limited to 10 kHz is quantized in 8 levels of a PCM system with probabilities 1/4, 1/5, 1/5, 1/10, 1/10, 1/20, 1/20, 1/20 respectively. Calculate entropy and rate of information.
- (c) For a lossless channel, prove that H(X|Y) = 0.

$$(2+2+2) + (2+2) + 2 = 12$$

Group – C

- 4. (a) For a Hamming distance of 3, how many errors can be detected? How many errors can be corrected?
 - (b) Define G and H matrix and show that $G \cdot H^T = 0$
 - (c) Parity check matrix of linear block code is

- (i) Determine the generator matrix
- (ii) Assuming that a vector [111011] is received, find the correct data.

(2+2)+4+(2+2)=12

5. (a) The parity check bits of a (7,4) block code are generated by

 $\mathsf{C5} = \mathsf{d}_1 \, \oplus \, \mathsf{d}_2 \, \oplus \, \mathsf{d}_4 \text{;} \, \mathsf{C}_6 = \mathsf{d}_1 \, \oplus \, \mathsf{d}_3 \text{;} \, \mathsf{C7} = \mathsf{d}_1 \, \oplus \, \mathsf{d}_3 \, \oplus \, \mathsf{d}_4$

- (i) Construct the corresponding generator matrix?
- (ii) Find the systematic code corresponding to the information bits [1100] and [1010]?
- (iii) If the received words are v1 = [1011001] and v2 = [1111011]; find the correct code words.
- (b) Derive the relation between syndrome S and the error vector E. (3+3+3)+3=12

Group – D

6. (a) For a systematic (7, 3) cyclic code determine the generator matrix and parity check matrix if $g(x) = x^4 + x^2 + x + 1$

(b) Code word polynomial c(x) belonging to the (7, 4) cyclic code with $g(x)=1 + x + x^3$ incurs errors so as to produce received polynomial v(x). Find c(x) when

(i) $v(x) = x^5 + x^2 + 1$ (ii) $v(x) = x^6 + x^3 + 1$

6 + 6 = 12

- 7. (a) For a (2, 1, 2) convolution code, $g^0 = (111)$ and $g^1 = (101)$. Draw the encoder. Find the state diagram, for this convolution code.
 - (b) What is constraint length in convolution code?
 - (c) Consider a received codeword r = 11 11 10 01 10 at the instants of time j=0,1,2,3,4 respectively. Find the decoded codeword by applying any decoding scheme.

(2+3)+2+5=12

ECEN 4102

Group – E

- 8. (a) Determine the Galois field elements of GF (2⁴) for the corresponding polynomial $p(x) = x^4 + x + 1$.
 - (b) What do you mean by primitive element? α^{10} , α^7 are field elements of GF (2⁴), determine their order and check whether or not they are primitive elements. Find the minimal polynomial of α^5 in GF (2³).

4 + (1 + 2 + 2) + 3 = 12

9. Write short notes on (any three)

- (i) Shannon-Fano code
- (ii) Turbo codes
- (iii) Hamming code
- (iv) Source coding
- (v) Golay code

 $(3 \times 4) = 12$

Department & Section	Submission Link	
ECE A	https://classroom.google.com/u/0/w/MTlyODIzMjk4NDI0/tc/Mjc1MTI4NDIwNzAz	
ECE B	https://classroom.google.com/u/1/w/MTUxODQ3NzA5Njg3/tc/Mjc0Njk4NjM5MzAw	
ECE C	https://classroom.google.com/w/MTlyNzc0NjA1ODY3/tc/Mjc0MTcxMDAwNzUz	
Department & Section	Submission Link (for Backlog)	
ECE	https://classroom.google.com/w/MTlyNzc0NjA1ODY3/tc/Mjc0MTcxMDAwNzUz	