FORMAL LANGUAGE & AUTOMATA THEORY (CSEN 3102)

Time Allotted : 3 hrs

1.

Full Marks: 70

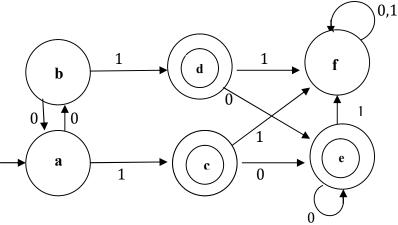
Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

. Choos	e the correct alternat	ng:	$10 \times 1 = 10$	
(i)	Which one of the following languages capushdown acceptor (ndpda)? (a) { $0^m1^n 0 < m, 0 < n$ } (c) { $0^m1^m0^m 0 < m$ }		nnot be accepted by a non-deterministic (b) { $0^m 1^n 0^m 0 < m, 0 < n $ } (d) { $0^m 1^n 0^r 0 < m, 0 < n, 0 < r $ }	
(ii)	The number of state language {x length o (a) 2			ich will accept the (d) 5.
(iii)	The production system (a) regular grammar (c) neither CFG nor Re		B→b represents (b) CFG but r (d) regular b	6
(iv)	Which of the followin [Here P,Q,R are all restring] (a) R+R=R (b	0 0	φ denotes null set ar	
(v)	Context free languages are not closed under(a) union(b) concatenation(c) intersection(d) none of these.			
(vi)	If all the productions of a grammar are right-linear (i.e., of the form $A \rightarrow aB$ or $A \rightarrow a$ where A,B are non terminal symbols and 'a' is a terminal symbol), then the grammar is (a) Type 0 (b) Type 1 (c) Type 2 (d) Type 3.			
(vii)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$			owing is correct? regular


- (viii) If all the productions are Right-Linear then the grammar is
 (a) Type 0
 (b) Type 1
 (c) Type 2
 (d) Type 3.
- (ix) If a Context Free Grammar is in Chomsky Normal Form then a production
 - (a) may contain a single non-terminal in the RHS
 - (b) may contain both terminal and non-terminal symbols in the RHS
 - (c) may be of the form $A \rightarrow \varepsilon$ where A is not the start symbol
 - (d) none of these.
- (x) Which of the following statements is false?
 - (a) Finite state machines when started with any input will always finally halt.
 - (b) Deterministic pushdown automata when started with any input will always finally halt.
 - (c) Nondeterministic pushdown automata when started with any input will always finally halt.
 - (d) Turing Machine when started with any input will always finally halt.

Group – B

- 2. (a) Let *L* be the following language defined on the input alphabet $\sum = \{a, b\}$. $L = \{\omega \mid \text{the string } \omega \text{ does } not \text{ contain the substring 'aaa' }$ Thus the strings babbab and abbba are both in *L*, but the string baaab is not in *L*. Design a DFA for the language.
 - (b) Design a deterministic finite state acceptor (dfsa) M_0 that will accept only those strings on the alphabet {0,1 } that contains Odd number of 0's and Even number 1's and explain the design in brief. Show both the state table and the state transition diagram of M_0 and briefly explain how M_0 works.
 - (c) Let $\Sigma = \{0, 1\}$. Give DFA accepting the set of all strings, when interpreted in reverse as a binary integer, is divisible by 3.

4 + 5 + 3 = 12

- 3. (a) Construct NFA- ε for the following language. Then, covert it into NFA without ε and then to DFA. Show each step. L1 = {0ⁿ | n is a multiple of 2 or 3}
 - (b) A finite state machine M₁ has the state transition diagram shown below. The start state is **a**, and the final states are **c**, **d** and **e**. Minimize the number of states in the machine.

6 + 6 = 12

Group – C

- 4. (a) Give the regular expressions for the following cases on $\Sigma = \{a, b\}$:
 - (i) $L_1 = \{w \mid w \text{ starts and ends with the same symbol}\}$
 - (ii) $L_2 = \{vwv \mid v, w \in \{a, b\}^*, |v| = 2\}$
 - (iii) $L_3 = \{w \mid every a in w is followed by at least one b\}$
 - (b) A non-deterministic finite state acceptor (ndfsa) M_2 has the state table shown below. The start state is S and the only final state is C. Convert M_2 to an equivalent deterministic finite state acceptor (dfsa) M_3 , clearly indicating the start and final states. Briefly explain your method of conversion.

	0	1
S	S, A	S
Α		В
В		С
С	С	С

$(3 \times 2) + 6 = 12$

5. (a) Remove all unit-productions, all useless symbols, and all null productions from the following grammar:

 $S \rightarrow 0X|0YY$ $X \rightarrow 00X|\lambda$ $Y \rightarrow 1Y|11Z$

Ζ→Ү

What language does this grammar generate? Justify your answer.

(b) Use the Pumping Lemma for Regular Languages to show that the language $L_{11} = {a^{n!} : n \text{ is any integer > 3} \text{ is not regular.}}$

(4+2)+6=12

Group – D

- 6. (a) Design a PDA M over $\{0, 1\}$ such that $L(M) = \{0^{2n}1^n | n \ge 1\}$. Explain the working strategy taking an example string of length 6.
 - (b) Consider the language $L_{12} = \{ 0^m 1^n 0^n 1^m | m, n > 0 \}$. Provide a context-free grammar for L_{12} thereby showing that L_{12} is a context-free language.

(4+2)+6=12

- 7. (a) Explain acceptance by empty stack and acceptance by final state for a PDA.
 - (b) Using the Pumping Lemma for Context-Free Languages, show that the language $L_{14} = \{ 0^m 1^n 0^m 1^n | m, n > 0 \}$ is not a Type 2 (context-free) language.
 - (c) Write the difference between DPDA and NPDA.

3 + 7 + 2 = 12

CSEN 3102

Group – E

8. Design a Turing machine M_5 which can accept the language $L_{15} = \{a^nb^n : n \ge 1\}$. Now show that M_5 accepts "aaabbb" but rejects "abab" and "aab".

(8 + 4) = 12

- 9. (a) Design a Turing machine for the following language: $\{0^n 1^m 0^n \mid m, n \ge 1\}$
 - (b) What is the 'Halting Problem' for Turing Machines? What do we mean when we say that the Halting Problem for Turing machines is unsolvable?

6 + (3 + 3) = 12

Department & Section	Submission link:
CSE A	https://classroom.google.com/c/MTIyMDY4NTIyMDE5/a/Mjc0ODM4 NDU1NzM0/details
CSE B	https://classroom.google.com/c/MTIzNDEyMjczNDM0/a/Mjc0Mzk1N TIxNDY4/details
CSE C	https://classroom.google.com/c/MTIyNDU1MDAzNTA0/a/Mjc0NDEy ODc30TY3/details