B.TECH/ECE/5TH SEM/ECEN 3102(BACKLOG)/2020 CONTROL SYSTEMS (ECEN 3102)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following: **10** × **1** = **10**

(i)	Given $G(s) = \frac{1}{s^2(s+1)}$	$\frac{k}{(5)(s+4)}$, the type a	nd order of the syste	m is
	(a) 3 and 3	(b) 3 and 0	(c) 2 and 4	(d) 3 and 1.
(ii)	If the maximum	n overshoot is 10 (b)0	00% the damping rat	io is (d) Infinite
(iii)	For the system $G(s) = \frac{16}{s^2 + 8s + 16}$, the (a) overdamped (c) critically damped		nature of the time response will be (b) underdamped (d) undamped.	
(iv)	Type of a transfer function deno (a) poles at origin (c) poles at infinity		otes the number of (b) zeros at origin (d) finite poles.	
(v)	The response of an undamped se (a) Constant (c) Decaying exponential		econd order system is (b) Ramp (d) Oscillatory.	
(vi)	The Routh-Hurwitz criterion giv (a) Relative stability (c) Gain margin		res (b) Absolute stability (d) Phase margin.	

(a) -4 (b) 1.33 (c) -1.33 (d) 4.

2. (a) Find out the overall transfer function using Mason's Gain formula.

- (b) Show force voltage analogy by comparing an electrical RLC circuit and a mechanical translational system.
- (c) List the advantages of negative feedback in a system.

6 + 4 + 2 = 12

3. (a) Determine the transfer function of the system using block diagram reduction technique.

- (b) Define the following and give examples:
 - (i) Linear system
 - (ii)Time invariant system

6 + (3 + 3) = 12

ECEN 3102

2

B.TECH/ECE/5TH SEM/ECEN 3102(BACKLOG)/2020

Group – C

4. (a) Determine the peak overshoot value and rise time for a unity negative feedback system whose open loop transfer function is given by

$$G(s) = \frac{16}{s^2 + 4s + 16}$$

Also determine the steady state error of the system for unit step input.

(b) The characteristic equation of a control system is

$$s(s^{2} + 5s + 20) + k(s + 2) = 0$$

Using Routh's criterion determine the range of k for which the system will be stable.

(5+2)+5=12

5. Sketch the complete root-locus for the open-loop transfer function, given below. Also determine at what value of K system becomes unstable?

$$G(s)H(s) = \frac{K}{s(s^2 + 5s + 6)}$$

12

Group – D

6. (a) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{5}{s(s+1)(s+2)}$ Draw the Nyquist plot and hence comment on its

stability.(b) Define relative stability.

10 + 2 = 12

12

7. Draw the Bode plot of the system having open loop transfer function $G(s) = \frac{200(s+10)}{s(s+5)(s+20)}.$

Group – E

8. (a) A system is represented by the following state and output equation: $\dot{X} = \begin{bmatrix} -3 & -2 \\ -1 & -2 \end{bmatrix} X + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t)$ $Y = \begin{bmatrix} 1 & 2 \end{bmatrix} X$

Find the poles of the system.

- (b) Find the transfer function of the system that is represented as $\dot{X} = \begin{bmatrix} -5 & -1 \\ 3 & -1 \end{bmatrix} X + \begin{bmatrix} 2 \\ 5 \end{bmatrix} u(t)$ $Y = \begin{bmatrix} 1 & 2 \end{bmatrix} X$
- (c) Define Controllability and Observability of a system.

4 + 5 + 3 = 12

ECEN 3102

B.TECH/ECE/5TH SEM/ECEN 3102(BACKLOG)/2020

- 9. Write short notes on any three:
 - (i) Gain margin and Phase margin
 - (ii) PID controller
 - (iii) Time domain specifications of a second order system
 - (iv) Steady state error
 - (v) Effect of damping factor on time response of second order system

 $3 \times 4 = 12$

Department & Section	Submission Link		
ECE	https://classroom.google.com/c/Mjc0NTMxNDE3NzMy/a/Mjc0NzI3NTgxMjQ5/details		