B.TECH/ECE/3RD SEM/ECEN 2103/2020 SIGNALS & SYSTEMS (ECEN 2103)

Time Allotted: 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following: **10** × **1** = **10**

(i)	Fourier series of an odd periodic function co (a) Odd harmonics (c) Cosine term			ntains only (b) even harmonics (d) sine term.	
(ii)	The area under the curve $\int_{0}^{\infty} \delta(t) dt$ is				
	(a) infinity	(b)unity	(c) zero	(d) undefined.	
(iii)	$x(t) = e^{-5t}u(t)$ is a (a) power signal (c) neither (a) or (b)		(b) energy signal (d) both (a) and (b).		
(iv)	Given the energy of a signal x(t) is said to be E, then what is the energy of the signal x(at) (a) E (b) E/a (c) aE (d) infinity.				
(v)	The z-transform of $\delta(n-m)$ is (a) z^{-m} (b) z^{-m-n} (c) z^{n-m} (d) z^{m-n} .				
(vi)	The time period (a) П/2w	l of a function x[(b)Π/w	n]= e ^{jwn} is (c)2Π/w	(d) 4Π/w.	

B.TECH/ECE/3RD SEM/ECEN 2103/2020

- What is the frequency shifting property of continuous time Fourier (vii) series?
 - (a) Multiplication in the time domain by a real sinusoid
 - (b) Multiplication in the time domain by a complex sinusoid
 - (c) Multiplication in the time domain by a sinusoid
 - (d) Addition in the time domain by a complex sinusoid.
- (viii) A system is stable if ROC (a) includes the unit circle
 - (b) excludes the unit circle
 - (c) lies on circle
 - (d) entire plane
 - (ix) Find the Nyquist rate and Nyquist interval of sinc[t]. (a)1 Hz, 1 sec (b) 2 Hz, 2 sec (d) 2 Hz, 1sec. (c) 0.5 Hz, 2 sec
 - The type of systems which are capable of taking any value in a (x) particular set of values are called as (a) analog (b)discrete (c) digital (d) continuous

Group - B

The trapezoidal pulse x(t) is applied to a differentiator defined by 2. (a) $y(t) = \frac{dx(t)}{dt}$ as shown bleow

- Sketch the output y(t) of the differentiator and state whether it is an (i) energy or a power signal.
- Determine the total energy or power of the signal. (ii)
- Use graphical method to solve the convolution of $x_1(n) = \{1, -1, 2, 3\}$ and (b) $x_2(n) = \{1, -2, 3, -1\}.$

(3+2)+7=12

B.TECH/ECE/3RD SEM/ECEN 2103/2020

- 3. (a) Impulse response of a LTI system is $h(t) = e^{-t} cos 2t u(t)$, Check whether the system is stable or not?
 - (b) What do you mean by causal and non-causal system? Check whether the following system is causal or not.

$$y(n) = x(n^2)$$

(c) Find the relation between step, ramp and delta function.

3 + (2 + 3) + 4 = 12

Group – C

- 4. (a) The unit step response of an LTI system is s(t)=2e^{-t} u(t). Determine its system function and impulse response.
 - (b) Explain the dirichlet condition for Fourier Transform.
 - (c) Consider an LTI system whose input x(t) and output y(t) are related by the differential equation $\frac{dy(t)}{dt} + 4y(t) = x(t)$. Find y(t) if the input is

 $x(t) = e^{-3t}$ and the initial conditions are given by $y(0^+) = 3$; $\frac{dy(0^+)}{dx} = 0$ 4 + 2 + 6 = 12

5. (a) Find the Fourier series for the wave form shown below

(b) For a system with transfer function $H(s) = \frac{s+2}{s^2+4s+3}$ find the zero state response if the input x(t)= {exp(-t)}u(t) 6 + 6= 12

Group – D

6. (a) Given the impulse response of a system $h(n) = \left(\frac{1}{2}\right)^n u(n)$

Using convolution theorem determine the response of the system to the input $x(n) = \left(\frac{3}{4}\right)^n u(n)$.

(b) State what is the ROC of the z-transform of a Right sided causal signal. Prove your statement.

6 + 6 = 12

ECEN 2103

3

7. (a) Find the z-transform and ROC and location of poles and zeros in the zplane.

(b)
$$x(n)=(3)^nu(n)-4.(2)^{n-1}u(n-1)$$

Find the inverse Z transform using Residue method.

$$\frac{4z^{-1}}{(1-2^{z-1})(1-5z^{-1})}$$
 ROC: 2<|Z|<5
6+6=12

Group – E

- 8. (a) (i) State sampling theorem. What is aliasing effect?
 - (ii) Find the Nyquist rate and the Nyquist interval for the signal $x(t) = cos(4000\pi t). cos(1000\pi t)$
 - (b) A low pass filter is described by the equation y[n] = 0.9y(n-1) + 0.1x(n)
 - (i) What is the impulse response of the filter?
 - (ii) Differentiate between Natural sampling and Flat-top sampling.

(2+2+3)+3+2=12

- 9. (a) A 600Ω resistor is connected across the 600Ω antenna input of a radio receiver. The bandwidth of the radio receiver is 20 kHz and the resistor is at room temperature of 27°C. Calculate the noise power and the noise voltage applied at the input of the receiver.
 - (b) A continuous random variable has the probability density function defined by $f(x) = \frac{2}{9(x-1)} 1 < x < 4 = 0$ otherwise

Determine the probability distribution function, the mean and variance of the random variable.

6 + 6 = 12

Department & Section	Submission Link		
ECE A	https://classroom.google.com/u/0/w/MTlyODI0MTk2OTI3/tc/MjcyNzUwOTAzMzYz		
ECE B	https://classroom.google.com/w/MTlyMjl1OTQzMzg4/tc/MjcyNzUwMjM1MTYz		
ECE C	https://classroom.google.com/c/MTlyNDlwNDQ4OTk3/a/Mjg2MjczODQyNzU3/details		
Department & Section	tment Submission Link (Backlog)		
ECE	https://classroom.google.com/c/MjkxNDI0ODExMzg3?cjc=nwmfwac		