TRANSPORT PHENOMENA (CHEN 4101)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following:
 - (i) For an unit vector δ_1 along x-direction and δ_2 along y-direction the definition for unit dyad $\delta_1 \delta_2$ yields _____

(a)	0	1	0]	-	0	0	0]
	0	0	0	(b)	0	1	0
	0	0	0		0	0	0
(c)	[1	0	0		0	1	0
	0	1	0	(d)	0	1	0
	0	0	0		0	0	0

(ii) Using Von-Karman integral method the thickness of momentum boundary layer is equal to _____

(a) $\frac{4.64}{\sqrt{Re_x}}$ (b) $\frac{2.32}{\sqrt{Re_x}}$ (c) $\frac{1}{\sqrt{Re_x}}$ (d) $\frac{9.28}{\sqrt{Re_x}}$

(iii) $\vec{\nabla} \times (c\vec{U}) =$ ____, where 'c' is the constant (a) $c\vec{\nabla} \times \vec{U}$ (b) $c\vec{\nabla} \cdot \vec{U}$ (c) $c \times (\vec{\nabla} \times \vec{U})$ (d) $c \times (\vec{\nabla} \cdot \vec{U})$

 $\begin{array}{ll} \mbox{(iv)} & \mbox{In the modified Reynolds analogy the 'j' factor for mass transfer is equal to} \\ \mbox{(a) } St_m Sc^{1/3} & \mbox{(b) } St_H Sc^{1/3} \\ \mbox{(c) } St_m Sc^{2/3} & \mbox{(d) } St_H Sc^{2/3}. \end{array}$

(v) For fluctuating properties ϕ_1 and ϕ_2 , the time averaging of the product of these properties yields _____

(a) $\phi_1^{\text{mean}} \phi_2^{\text{mean}} + \overline{\phi_1' \phi_2'}$ (b) $\phi_1^{\text{mean}} \phi_2^{\text{mean}}$ (c) $\overline{\phi_1' \phi_2'}$ (d) $\phi_1^{\text{mean}} \phi_2^{\text{mean}} + \phi_1' \phi_2'$

CHEN 4101

 $10 \times 1 = 10$

- (vi) Turbulent energy dissipation function is dependent on _____
 - (a) gradient of the temperature fluctuation
 - (b) gradient of the velocity fluctuation
 - (c) product of gradient of velocity fluctuation
 - (d) none of above.

(vii) The radius of a capillary tube (length: 0.5 m) is equal to ______ for a Newtonian liquid (density: 955.2 kg/m³; kinematic viscosity: $4.03 \times 10^{-5} \text{ m}^2/\text{s}$) flow with mass flow rate of 0.003 kg/s. Pressure drop in the tube: 4.829×10^5 Pa. (a) 7.51×10^{-4} m (b) 8.51×10^{-4} m (c) 9.51×10^{-4} m (d) 10.51×10^{-4} m.

(viii) When vapor condenses on a cooled wall the thickness of the resulting liquid film is _____

(a) directly proportional to the latent heat of condensation of the vapour

- (b) inversely proportional to the latent heat of condensation of the vapor
- (c) has no relation to latent heat of condensation of the vapour
- (d) directly proportional to the square of latent heat of condensation of the vapour.
- (ix) The Lennard-Jones potential function is given by _____, where r is the actual distance between a pair of molecules, σ is the collision diameter and ϵ is the characteristic energy of the molecules.

(a)
$$4\epsilon \left[\left(\frac{\sigma}{r}\right)^6 - \left(\frac{\sigma}{r}\right)^{12} \right]$$

(b) $4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$
(c) $4\epsilon \left[\left(\frac{\sigma}{r}\right)^3 - \left(\frac{\sigma}{r}\right)^{12} \right]$
(d) $4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^3 \right]$

- (x) For fluids with Pr >1, the temperature boundary layer _____
 - (a) overlaps with velocity boundary layer
 - (b) lies outside the velocity boundary layer
 - (c) lies inside the velocity boundary layer
 - (d) overlaps with the velocity boundary layer.

Group – B

- 2. (a) For an irrotational two dimensional flow of a fluid (density ρ) show that the value of the exponent m is equal to either 0 or 1, when $u_x(x,y)=Cx^m$, $u_y(x,0)=0$ and $P(0,0)=P_0$. u_x is the x direction component of velocity u, u_y is the y direction component of velocity u and P is the applied pressure to generate flow.
 - (b) "No-slip assumption's validity during the formulation of any transport model for a fluid flow inside a conduit depends on the geometry of the conduit." – Justify the appropriateness of the statement.

9 + 3 = 12

3. (a) "In a cartesian coordinate system a scalar, vector and tensor can be represented with 3^o, 3¹ and 3² respectively." – Justify the correctness of the statement.

(b) The following data are available for the viscosities of mixtures of hydrogen and Freon-12 (dichlorodifluoromethane) (MW 120.92) at 25°C and 1 atm:

Mole fraction of H ₂	0	1
μx10 ⁶ (poise)	124	88.4

Find out the viscosity of the mixture, when 50% of hydrogen is mixed with 50% of Freon-12. 3 + 9 = 12

Group – C

- 4. (a) Applying shell momentum balance, derive Hagen-Poiseuille equation in case of a laminar flow of an incompressible Newtonian fluid in a circular tube.
 - (b) "The logic behind Reynold's analogy is the similarity between nondimensional form of the convection-diffusion equation for any transport process, when both Pr=1 and Sc=1." – Prove the correctness of the statement.

7 + 5 = 12

- 5. (a) For the turbulent flow in smooth circular tubes, the function $\frac{\overline{v}_z}{\overline{v}_{z,max}} = \left(1 \frac{r}{R}\right)^{\frac{1}{n}}$ is sometimes useful for curve-fitting purposes: near Re=4 × 10³, n=6; near Re=1.1 × 10⁵, n=7; and near Re=3 × 10⁶, n=10. Show that the ratio of average to maximum velocity is $\frac{\langle \overline{v}_z \rangle}{\overline{v}_{z,max}} = \frac{2n^2}{(n+1)(2n+1)}$.
 - (b) Show that the time averaging of the product of two properties ϕ_1 and ϕ_2 is given by $\overline{\phi_1\phi_2} = \Phi_1\Phi_2 + \overline{\phi_1\phi_2}$, where Φ is the mean component and ϕ' is the fluctuating component of ϕ . **7** + **5** = **12**

Group – D

6. (a) Fig. 1 given below shows heat conduction in a finite slab of given dimensions. The thermal conductivity and density of the slab are 0.96 cal/(cm s °C) and 8 gm/cc. The slab is initially kept at 20 °C.

State the governing equation together with all boundary and initial conditions. Derive the dimensionless form of all equations. Show detailed steps.

(b) Derive the equation for temperature profile as a function of time and space. You are required to determine the temperature profile along the slab at 10s.

4 + 8 = 12

Calculate the thermal conductivity of a mixture containing 10 mole % CO₂ and 50 mole % H₂ and the rest Ar at 1 atm and 300K. The following data is given:

Gas	C_{ρ} J/(kg K)	μ (Pa s)	к (W/m
			К)
H_2	14280	0.8944 × 10 ⁻⁵	0.1789
CO ₂	848	1.506 × 10 ⁻⁵	0.0166
Ar	520	2.278 × 10 ⁻⁵	0.01784

12

Group – E

8. Cl₂ (A)-air mixture is fed to a chamber filled with cyclohexene (C₆H₁₀) dissolved in CCl₄. It was found that the reaction of Cl₂ with C₆H₁₀ is second order with respect to Cl₂ and zero order with respect to C₆H₁₀. Hence the rate of disappearance of Cl₂ per unit volume is k₂C_{A²}. B is a C₆H₁₀ - CCl₄, mixture, assuming that the diffusion can be treated as pseudobinary. Assume that the air is essentially insoluble in the C₆H₁₀ - CCl₄, mixture. Let the liquid phase be sufficiently deep that L can be taken to be infinite. Show that the

concentration profile is given by
$$\frac{C_{A0}}{C_A} = \left(1 + \sqrt{\frac{k_2 C_{A0}}{6D_{AB}}}z\right)^2$$

Explain the significance of Reynolds analogy in transportation of a quantity during fluid flow?

9 + 3 = 12

9. (a) A droplet of liquid A, of radius r_1 is suspended in a stream of gas B. We postulate that there is a spherical stagnant gas film of radius r_2 surrounding the droplet. The concentration of A in the gas phase is x_{A1} at $r = r_1$ and X_{A2} at the outer edge of the film, $r = r_2$. By a shell balance, show that for steady-state diffusion r^2N_{Ar} is a constant within the gas film, and set the constant equal to $r_1^2N_{Ar1}$ at the droplet surface also show that the result leads to the following equation for x_A .

$$r_1^2 N_{Ar1} = -\frac{cD_{AB}}{1-x_A}r^2 \frac{dx_A}{dr}$$

(b) What is the purpose of calculating mass transfer average velocity in two different ways – one is the mass average velocity and the other one is the molar average velocity?

9 + 3 = 12

Department & Section	Submission Link		
CHE	https://classroom.google.com/c/MTIyMDU0NDEwOTE0/a/MjY0MjUxMjQ3Njgw/details		