TRANSPORT PHENOMENA (CHEN 4101)

Time Allotted : 3 hrs Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
	- (i) For an unit vector δ_1 along x-direction and δ_2 along y-direction the definition for unit dyad δ1δ² yields ____________________

(ii) Using Von-Karman integral method the thickness of momentum boundary layer is equal to _________

(a) x 4.64 Re (b) x 2.32 Re (c) x 1 Re (d) x 9.28 Re

(iii) $\vec{\nabla} \times (c\vec{U}) =$ \rightarrow (\rightarrow _____________, where 'c' is the constant (a) $c\vec{v} \times \vec{U}$ (b) $c\vec{v} \cdot \vec{U}$ (c) $c \times (\vec{\nabla} \times \vec{U})$ $\ddot{}$ (d) $c \times (\vec{\nabla} \cdot \vec{U})$ $\frac{1}{2}$ $\frac{1}{2}$

(iv) In the modified Reynolds analogy the 'j' factor for mass transfer is equal to (a) $St_m Sc^{1/3}$ (b) $St_HSc^{1/3}$ (c) St_mSc^{2/3} (d) St_HSc^{2/3}.

(v) For fluctuating properties ϕ_1 and ϕ_2 , the time averaging of the product of these properties yields ______________

(a) $\phi_1^{\text{mean}} \phi_2^{\text{mean}} + \phi_1 \phi_2^{\text{'}}$ (b) $\phi_1^{\text{mean}} \phi_2^{\text{mean}}$ (b) $\phi_1^{\text{mean}} \phi_2^{\text{mean}}$ (c) $\phi_1 \phi_2$ $\phi_1 \phi_2$ (d) $\phi_1^{\text{mean}} \phi_2^{\text{mean}} + \phi_1 \phi_2$

CHEN 4101 1

.

- (vi) Turbulent energy dissipation function is dependent on ________
	- (a) gradient of the temperature fluctuation
	- (b) gradient of the velocity fluctuation
	- (c) product of gradient of velocity fluctuation
	- (d) none of above.

(vii) The radius of a capillary tube (length: 0.5 m) is equal to _________ for a Newtonian liquid (density: 955.2 kg/m³; kinematic viscosity: 4.03×10^{-5} m²/s) flow with mass flow rate of 0.003 kg/s. Pressure drop in the tube: 4.829 x 10⁵ Pa. (a) 7.51×10^{-4} m (b) 8.51×10^{-4} m (c) 9.51×10^{-4} m (d) 10.51×10^{-4} m.

(viii) When vapor condenses on a cooled wall the thickness of the resulting liquid film is

(a) directly proportional to the latent heat of condensation of the vapour

- (b) inversely proportional to the latent heat of condensation of the vapor
- (c) has no relation to latent heat of condensation of the vapour
- (d) directly proportional to the square of latent heat of condensation of the vapour.
- (ix) The Lennard-Jones potential function is given by _________________, where r is the actual distance between a pair of molecules, σ is the collision diameter and ε is the characteristic energy of the molecules.

(a)
$$
4\varepsilon \left[\left(\frac{\sigma}{r} \right)^6 - \left(\frac{\sigma}{r} \right)^{12} \right]
$$

\n(b) $4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right]$
\n(c) $4\varepsilon \left[\left(\frac{\sigma}{r} \right)^3 - \left(\frac{\sigma}{r} \right)^{12} \right]$
\n(d) $4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^3 \right]$

- (x) For fluids with Pr >1 , the temperature boundary layer
	- (a) overlaps with velocity boundary layer
	- (b) lies outside the velocity boundary layer
	- (c) lies inside the velocity boundary layer
	- (d) overlaps with the velocity boundary layer.

Group – B

- 2. (a) For an irrotational two dimensional flow of a fluid (density ρ) show that the value of the exponent m is equal to either 0 or 1, when $u_x(x,y) = Cx^m$, $u_y(x,0) = 0$ and $P(0,0)=P_0$. u_x is the x direction component of velocity u, u_y is the y direction component of velocity u and P is the applied pressure to generate flow.
	- (b) "No-slip assumption's validity during the formulation of any transport model for a fluid flow inside a conduit depends on the geometry of the conduit." – Justify the appropriateness of the statement.

9 + 3 = 12

3. (a) "In a cartesian coordinate system a scalar, vector and tensor can be represented with 3⁰, 3¹ and 3² respectively." – Justify the correctness of the statement.

(b) The following data are available for the viscosities of mixtures of hydrogen and Freon-12 (dichlorodifluoromethane) (MW 120.92) at 25°C and 1 atm:

Find out the viscosity of the mixture, when 50% of hydrogen is mixed with 50% of Freon-12. $3 + 9 = 12$

Group – C

- 4. (a) Applying shell momentum balance, derive Hagen-Poiseuille equation in case of a laminar flow of an incompressible Newtonian fluid in a circular tube.
	- (b) "The logic behind Reynold's analogy is the similarity between nondimensional form of the convection-diffusion equation for any transport process, when both Pr=1 and Sc=1." – Prove the correctness of the statement.

 $7 + 5 = 12$

- 5. (a) For the turbulent flow in smooth circular tubes, the function $\frac{\overline{V}_z}{\overline{V}_{z,\text{max}}} = \left(1 \frac{r}{R}\right)^{r}$ $\left(1-\frac{r}{n}\right)^{\frac{1}{n}}$ z,max $\frac{\nabla_z}{\nabla_z} = \left(1 - \frac{r}{R}\right)$ $\overline{\mathsf{v}}_{_{\mathsf{z}\,\mathsf{max}}}$ (R is sometimes useful for curve-fitting purposes: near $Re=4 \times 10^3$, n=6; near $Re=1.1$ \times 10⁵, n=7; and near Re=3 \times 10⁶, n=10. Show that the ratio of average to maximum velocity is $\frac{\sqrt{v_z}}{\overline{v}_{z,\text{max}}} = \frac{2H}{(n+1)(2n+1)}$ $+1)(2n+1$ $\langle z \rangle$ 2n² z,max $\overline{\mathsf{v}}_{\mathsf{z}}\rangle$ 2n $\bar{v}_{z_{\text{max}}}$ $(n+1)(2n+1)$.
	- (b) Show that the time averaging of the product of two properties ϕ_1 and ϕ_2 is given by $\phi_1\phi_2=\Phi_1\Phi_2+\phi_1\phi_2$, where Φ is the mean component and ϕ' is the fluctuating component of ϕ . $7 + 5 = 12$

Group – D

6. (a) Fig. 1 given below shows heat conduction in a finite slab of given dimensions. The thermal conductivity and density of the slab are 0.96 cal/(cm s \degree C) and 8 gm/cc. The slab is initially kept at 20 °C.

State the governing equation together with all boundary and initial conditions. Derive the dimensionless form of all equations. Show detailed steps.

(b) Derive the equation for temperature profile as a function of time and space. You are required to determine the temperature profile along the slab at 10s.

 $4 + 8 = 12$

7. Calculate the thermal conductivity of a mixture containing 10 mole $% CO₂$ and 50 mole % H² and the rest Ar at 1 atm and 300K**.** The following data is given:

Group – E

8. Cl₂ (A)-air mixture is fed to a chamber filled with cyclohexene (C_6H_{10}) dissolved in CCl₄. It was found that the reaction of Cl_2 with C_6H_{10} is second order with respect to Cl_2 and zero order with respect to C_6H_{10} . Hence the rate of disappearance of Cl_2 per unit volume is $k_2C_A^2$. B is a C_6H_{10} - CCI₄, mixture, assuming that the diffusion can be treated as pseudobinary. Assume that the air is essentially insoluble in the C_6H_{10} - CCl₄, mixture. Let the liquid phase be sufficiently deep that L can be taken to be infinite. Show that the

concentration profile is given by $\frac{C_{A0}}{C} = \left(1 + \sqrt{\frac{k_2 C_{A0}}{C}} \right)^2$ $\left(\begin{array}{cc} \sqrt{6} & \sqrt{6} \\ \sqrt{6} & \$ 2 A0 _| 1 _ | 12 A0 A (V^{JL}AB $\frac{C_{A0}}{2} = \frac{1}{1 + \frac{1}{1 + \frac{1}{1}} \cdot \frac{1}{1 + \frac{1}{1}} \cdot \frac{1}{1}}$ $C_{\rm A}$ ($\sqrt[3]{6}$ D

Explain the significance of Reynolds analogy in transportation of a quantity during fluid flow?

9 + 3 = 12

9. (a) A droplet of liquid A, of radius r_1 is suspended in a stream of gas B. We postulate that there is a spherical stagnant gas film of radius r_2 surrounding the droplet. The concentration of A in the gas phase is x_{A1} at $r = r_1$ and X_{A2} at the outer edge of the film, $r = r_2$. By a shell balance, show that for steady-state diffusion r^2N_{Ar} is a constant within the gas film, and set the constant equal to $r_i^2N_{\text{Arr}}$ at the droplet surface also show that the result leads to the following equation for x_A .

$$
r_1^2 N_{A r 1} = -\frac{c D_{AB}}{1 - x_A} r^2 \frac{dx_A}{dr}
$$

(b) What is the purpose of calculating mass transfer average velocity in two different ways – one is the mass average velocity and the other one is the molar average velocity?

 $9 + 3 = 12$

