MASS TRANSFER I (CHEN 3103)

Time Allotted : 3 hrs

Full Marks : 70

 $10 \times 1 = 10$

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following:
 - (i) The diffusivity (D) in a binary gas mixture is related to pressure (P) as

(a) $D \alpha P^{0.5}$	(b) $D \alpha = \frac{1}{P^{0.5}}$
(c) $D \alpha \frac{1}{P}$	(d) D $\alpha \frac{1}{P^{1.5}}$

- (ii) In case of distillation, as the reflux ratio is decreased, the intersection of both the operating lines
 - (a) moves towards the diagonal(b) moves away from the diagonal(c) does not at all move(d) none of these.
- (iii) Penetration theory relates average mass transfer co-efficient (k) with diffusivity (D) as (a) k α D (b) k α D ^{0.5} (c) k α D ^{1.5} (d) k α D².
- (iv) Corresponding to Prandtl number in heat transfer, the dimensionless group in mass transfer is the _____ Number.
 (a) Sherwood (b) Schmidt
 (c) Peclet (d) Stanton
- (v) In the absorption of ammonia in water, the main resistance to absorption is by the _____phase.
 (a) liquid
 (b) gas
 - (c) both liquid and gas (d) neither liquid nor gas
- (vi) Operating velocity in a packed tower is usually_____ the flooding velocity
 (a) half
 (b) twice
 (c) equal to
 (d) more than

CHEN 3103

- (vii) In case of an absorber, the operating
 - (a) line always lie above the equilibrium curve
 - (b) line always lie below the equilibrium curve
 - (c) line can be either above or below the equilibrium curve
 - (d) none of these.
- (viii) When the feed to a distillation column is a subcooled liquid, the slope of the feed line is
 - (a) positive
 - (c) 1

(b) negative

- (d) none of these.
- (ix) In a distillation column, with increase in the reflux ratio, the heat removed in the condenser
 - (a) increases
 - (b) decreases
 - (c) remains unaffected
 - (d) and the heat required in reboiler decreases.
- (x) Azeotropic distillation is employed to separate
 - (a) constant boiling mixture
 - (b) high boiling mixture
 - (c) mixture with very high relative volatility
 - (d) none of these.

Group – B

- 2. (a) In case of binary diffusion of A (density ρ_A) and B (density ρ_B), express the relation between mass average velocity to individual mass velocity.
 - (b) Calculate the rate of diffusion of acetic acid (A) (Mol.wt. 60) across a film of nondiffusing water (B) solution 2 mm thick at 20°C when the concentrations on opposite sides of the film are 9 and 3 wt% acid respectively. The diffusivity of acetic acid in the solution is 0.95×10^{-9} m²/s. Given : density of 9 wt% and 2 wt% acid solutions are 1010 kg/m³ and 1002 kg/m³ respectively.
 - (c) Define Sherwood no.
 - (d) Discuss film theory related to mass transfer.

2 + 6 + 1 + 3 = 12

- 3. (a) Two large vessels are connected by a tube of 6 cm in diameter and 20 cm in length. Vessel 1 contains 75% $N_2(A)$ and rest $O_2(B)$. Vessel 2 contains 75% O_2 and rest N_2 . The temperature is 25°C and pressure is 1.8 atm. Diffusivity D_{N2-O2} at 316 K and 1 atm. pr. is 0.23 cm²/sec. Calculate the following:
 - (i) Steady state flux and rate of transport of A from vessel 1 to 2.
 - (ii) The partial pressure of N_2 in the tube at a distance 12 cm from vessel 1.
 - (iii) The net mass flux w.r.t a stationary observer.

(b) Prove that $D_{AB} = D_{BA..}$

9 + 3 = 12

Group – C

- 4. (a) Name two equipments used in mass transfer operations with liquid continuous and gas dispersed mode.
 - (b) Discuss the operating characteristics in a sieve tray tower based on variation of liquid rate and gas rate.

2 + 10 = 12

- 5. (a) Give two examples of gas absorption with chemical reaction.
 - (b) Discuss the interface behaviour for instantaneous reaction and extremely slow reaction in case of gas absorption with chemical reaction.
 - (c) Gaseous A absorbs and reacts with B in liquid according to A $(g \rightarrow I) + B$ $(I) \rightarrow R$ (I) $-r_A = kC_A C_B$ in a packed bed under conditions where $k_{AG}a = 0.1 \text{ mol/hr. m}^3$ of reactor. Pa, $a = 100 \text{ m}^2/\text{ m}^3$ of reactor, Pa = 100 m³ of liquid/m³ of reactor. hr. $f_I = 0.1 \text{ m}^3$ of liquid/m³ of reactor, K = 10 m³ of liquid/mol.hr. Henry's Law constant, H_A = 10⁵ Pa. m³ liquid/mol.

At a point in the reactor where p_A = 100 Pa and C_B = 100 mol/m³ liquid,

- (i) Calculate the rate of reaction in mol/hr. m³ of reactor
- (ii) Location of major resistance.

2 + 4 + 6 = 12

Group – D

6. (a) Using Kremser equation determine the number of theoretical stages required for absorption of 90% acetone in a gas containing 6 mol% acetone in air in a counter current stage tower. The total inlet gas flow rate to the tower is 34 kg mol/ h and the total inlet pure water flow to be used to absorb the acetone is 105 kg mol /h. The process is to operate isothermally at 300K and a total pressure of 101.3kPa.

Equilibrium relation is given by : $y_a = 2.5 x_a$.

- (b) Mention the limitations of using Kremser Equation.
- (c) What do you understand by *packing factor*?

8 + 2 + 2 = 12

7. (a) A binary gas mixture containing 7% of a solute A is to be scrubbed with the solvent B in a packed tower. Based on flooding calculations, a tower diameter of 1.2 m has been selected. The total gas rate at the bottom is 62 kmol/h. The

exit gas must not contain more than 0.2% of the solute. Pure solvent B enters the tower at a rate of 40 kmol/h. The gas phase and liquid phase mass transfer coefficients (based on mole ratio) are $k_x= 2.05 \text{ kmol/(m^2)(h)(\Delta X)}$, and $k_Y= 1.75 \text{ kmol/(m^2)(h)(\Delta Y)}$. Equilibrium line equation is Y=0.63X. The specific interfacial area of gas-liquid contact is 71 m²/m³. Calculate the height of packing necessary for the separation.

[mm graph paper is required].

(b) Mention the desirable properties of solvent for gas absorption.

10 + 2 = 12

Group – E

8. A mixture of benzene and toluene having 38% benzene is to be separated at a rate of 200 kmol/ hr. into a top product containing 96% benzene and a bottom product with 5% of it. The average relative volatility of benzene in the mixture is 2.5. A reflux ratio of 3 is suggested. The feed is a 50% liquid and 50% vapour.

Find the following:

- (i) Rate of distillate and bottom product.
- (ii) Equation of rectifying section operating line.
- (iii) Equation of feed line.
- (iv) Vapour flow rate in rectifying section and stripping section.

 $(3 \times 4) = 12$

9. (a) A mixture of 46 mole percent benzene (A) and rest toluene (B) is subjected to flash distillation at a separator pressure of 1 atm. The relative volatility α_{AB} is 2.5. Find the composition of the vapour and liquid leaving the separator for following cases:

(i) fraction of feed vaporized =0.5, (ii) fraction of feed vaporized =1.

(b) What do you understand by *minimum boiling azeotrope*? Give example.

8 + 4 = 12

Department & Section	Submission Link
CHE	https://classroom.google.com/c/MTIyMzkyNzQzNzI1/a/MjcxNDAyMTc4NTcy/details