CHEMICAL REACTION ENGINEERING-I (CHEN 3102)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

10 × 1 = 10

- (i) For the reaction NO + $\frac{1}{2}$ O₂ = NO₂ carried out in presence of Pt-Rh catalyst, the reaction
 - (a) is considered as homogeneous
 - (b) is considered as heterogeneous
 - (c) may be either homogeneous or heterogeneous
 - (d) none of the above.
- (ii) Pick out the correct statement
 - (a) A chemical reaction occurs when the energy of the reacting molecule is less than the activation energy of the reaction
 - (b) Chemical equilibrium is a static state
 - (c) A photochemical reaction is catalysed by light
 - (d) Reactions with high activation energies are very temperature sensitive.
- (iii) A given reaction is much more temperature sensitive at
 - (a) low temperature

- (b) high temperature
- (c) all temperature levels (d) none of the above.
- (iv) The rate constant of a reaction depends on the:
 - (a) Time of reaction
 - (b) Extent of reaction
 - (c) Initial concentration of reactants
 - (d) Temperature of the system.
- (v) Higher free energy of activation of a chemical reaction (at a given temperature) implies(a) higher rate of reaction
 - (b) higher equilibrium conversion
 - (c) Slower rate of reaction
 - (d) none of the above.

- The half life period of a first order reaction is given by (where, k = rate constant. (vi) (b) 0.693/k (a) 0.693k (d) 0.593/k. (c) 0.593k
- (vii) In a chemical reaction, the time required to reduce the concentration of reactant from 100 mol/lit to 50 mol/lit is same as that required to reduce it from 2 mol/lit to 1 mol/lit in the same volume. Then the order of this reaction is (a) zero (b) 2 (c) 1 (d) none of the above.
- (viii) The performance equations for constant density systems are identical for (b) P.F.R. and batch reactor (a) PFR and MFR
 - (c) MFR and batch

- (d) none of the above.
- (ix) A space time of 3 hours for a flow reactor means that
 - (a) It takes three hours to dump the entire volume of the reactor with feed
 - (b) Three reactor volumes of feed can be processed every hour ,Conversion is cent per cent after three hours
 - (c) The time required to process one reactor volume of feed (measured at specified conditions) is 3 Hours
 - (d) none of the above.
- (x) Stimulus-response techniques are commonly used to characterize the extent of non-ideal flow in vessels. Tracer input signal is used as stimulus. Any material can be used
 - (a) as tracer if it can disturb the flow pattern in the vessel
 - (b) as tracer if it does not disturb the flow pattern in the vessel and it can be detected
 - (c) as tracer if it follows ideal flow patterns
 - (d) none of the above.

Group – B

2. Show that the following scheme (a)

 $N_2O_5 \implies NO_2 + NO_3^*$ $NO_3^* \rightarrow NO^* + O_2$ $NO^* + NO_3^* \rightarrow 2 NO_2$ Is consistent with and can explain the observed first order decomposition of N_2O_5 .

(b) At 500 K the rate of a bimolecular reaction is ten times the rate at 400 K. Find the activation energy of this reaction from collision theory.

6 + 6 = 12

An aqueous solution of ethyl acetate is to be saponified with sodium 3. (a) hydroxide. The initial concentration of ethyl acetate is 5.0 g/liter and that of caustic soda is 0.10 normal. Values of the second-order rate constant, in liters/(g mole)(min), are k = 23.5 at 0°C and 92.4 at 20°C. The reaction is

essentially irreversible. Estimate the time required to saponify 95% of the ester at 40°C.

(b) Find the first order rate constant for the disappearance of A in the gas reaction 2A = R if on holding the pressure constant the volume of the reaction mixture , starting with 80% A decreases by 20% in 3 min.

8 + 4 = 12

Group – C

4. (a) The gas leaving an ammonia oxidation plant consists of 10% NO, 1% NO₂, 8% O₂ and rest inert. The gas is allowed to oxidize NO (A) + $1/2O_2$ (B) = NO₂ (R) until NO₂: NO ratio reaches 8:1 and the oxidized gas is then absorbed in water to produce nitric acid. Calculate the size of the tubular reactor (assuming plug flow) operating at 20°C and I atm needed to NO to NO₂ oxidation for a gas feed rate of 1000 m³/hr (measured at 0°C and 1 atm). The reaction rate equation is

 $r_{NO_2} = 14000C_{No}^2 C_{O_2} \frac{kmol}{m^3 s}$

(b) An aqueous reactant stream (4mol A/lit) passes through a mixed flow reactor followed by a plug flow reactor. Find the concentration at the exit of the plug flow reactor if in the mixed flow reactor $C_{A=1}$ mol/lit. The reaction is first order with respect to A and the reactor volumes are equal.

7 + 5 = 12

- 5. (a) The elementary irreversible aqueous-phase reaction $A + B \rightarrow R + S$ is carried out isothermally as follows. Equal volumetric flow rates of two liquid streams are introduced into a 4-liter mixing tank. One stream contains 0.020 mol A/liter, the other 1.400 mol B/liter. The mixed stream is then passed through a 16-liter plug flow reactor. We find that some R is formed in the mixing tank, its concentration being 0.002 mol/liter. Assuming that the mixing tank acts as a mixed flow reactor, find the concentration of R at the exit of the plug flow reactor as well as the fraction of initial A that has been converted in the system.
 - (b) Show that the performance equation of a recycle reactor changes to that of a mixed flow reactor if the recycle ratio (R) tend to infinity.

6 + 6 = 12

Group – D

6. (a) Substance A in the liquid phase produces R and S by the following reactions R second order

 A'_{\backslash}

S first order

A feed ($C_{A0} = 1$, $C_{R0} = 0$, C_{S0} , = 0) enters two mixed flow reactors in series, ($\tau = 2.5$ min, τ = 10 min). Knowing the composition in the first reactor ($C_{A1} = 0.4$, $C_{R1} = 0.2$, $C_{S1} = 0.7$), find the composition leaving the second reactor.

(b) A and B react with each other as follows: $2A \rightarrow R$, $r_R = k_1C_A^2$ $A + B \rightarrow S$, $r_S = k_2C_AC_B$ $2B \rightarrow T$, $r_T = k_3C_B^2$ What ratio of A and B should be maintained in a mixed flow reactor so as to maximize the fractional yield of desired product S?

6 + 6 = 12

7. Chemical R is to be produced by the decomposition of A in a given mixed reactor. The reaction proceeds as follows:

$$A \rightarrow R$$
, $r_R = k_1 C_A$
 $2A \rightarrow S$, $r_S = k_2 C_A^2$

Let the molar cost ratio R/R = M (S is waste material of no value), and for convenience let $k_1 = Nk_2C_{A0}$. In the feed C_{A0} is fixed.

- (i) Ignoring operating costs, find what conversion of A should be maintained in the reactor to maximize the gross earnings and therefore the profits.
- (ii) Repeat part (i) with the hourly operating cost dependent on feed rate and given by $\alpha + \beta F_{AO}$.

12

Group – E

- 8. (a) Define mean residence time (\bar{t}) and variance (σ^2) for non ideal reactor system and discuss in detail how these can be determined from tracer experiment.
 - (b) State the different types of models available for determination of non ideality of reactors and discuss them briefly.

6 + 6 = 12

9. The concentration reading in the following table represents a continuous response to a delta function input into a closed vessel which is used as a chemical reactor.

Time (t), min	0	5	10	15	20	25	30	35
Tracer concentration, gm/L fluid	0	3	5	5	4	2	1	0

The vessel is to be used to carry out a first order liquid phase reaction $A \rightarrow R$ having rate constant (k) = 0.307 min⁻¹. Find the fraction of reactant unconverted in this real reactor.

12

Department & Section	Submission Link	
CHE	https://classroom.google.com/c/MTQzMjU0NzQ1Nzg1/a/MjcxMTMxODYyOTk0/details	