B.TECH/AEIE/CSE/7THSEM/MATH 4182/2020

LINEAR ALGEBRA (MATH 4182)

Time Allotted : 3 hrs

1.

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

Choose the correct alternative for the following:				10 × 1 = 10
(i)	The eigenvalues of the matrix $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -4 \end{pmatrix}$ are			
	(a) (0, -1, -3)	(b) $(0, -2, -3)$	(c) (0, 2, 3)	(d) (0, 1, 3).
(ii)	The number of linearly independent eigenvectors of the matrix $B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ is			$=\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ is
	(a) 1	(b) 2	(c) 3	(d) 0.
(iii)	The dimension of the (a) 2	vector space of all 2 × 2 r (b) 3	natrices such that a (c) 4	$a_{11} + a_{22} = 0$ is (d) 5.
(iv)	 Which of the following is not always true? (a) The determinant of a positive definite matrix is positive (b) A positive definite matrix is invertible (c) A diagonal matrix with positive diagonal entries is positive definite (d) A symmetric matrix with positive determinant is positive definite. 			
(v)	If . represents the (a) 25	usual norm in \mathbb{R}^n , $ v $ w (b) 5	when $v = (4, -2, 2, 1)$ (c) $\sqrt{5}$) is given by (d) $5\sqrt{5}$.
(vi)	When the matrix eq onto the column space (a) $ b - Ax $	uation $Ax = b$ is inconsidered of A , then the least-square (b) $ p - Ax $	istent and p is the uares solution of Ax (c) $ A^T Ax $	projection of b x = b minimizes (d) $ Ax $.
(vii)	Which of the followin (a) $\{(0, 1, 0), (-1, 0, 0), (-1, 0, 0), (-1, 0, 0), (-1, 0, 0), (-1, $	ng sets form a basis of \mathbb{R}^3)), (3, 2, 0)})), (0, 0, 5)}	³ ? (b) {(0, 0, 3), (0, (d) {(3, 0, -2), (2,3),(0,-1,0)} 1,0,0),(0,0,1)}.

Full Marks: 70

B.TECH/AEIE/CSE/7TH SEM/MATH 4182/2020

- (viii)The kernel of the linear transformation $T: U \to V$ is
(a) subspace of U(b) subgroup of U
(c) subset of U(c) subset of U(d) subspace of V.
- (ix) The intersection of the Range and Null space of T is the (a) dim(T) (b) rank(T) (c) zero sub-space of V (d) nullity(T).

(x) Let *V* be the vector space of functions with basis $S = \{\sin t, \cos t, e^t\}$ and let *D* be the usual differential operator on *V* defined by $D(f(t)) = \frac{d}{dt}(f(t))$. Then the matrix representing *D* in the basis *S* is given by

$$(a) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(b) \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

$$(c) \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(d) \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Group – B

- 2. (a) Find the eigenvalues and eigenvectors of the matrix given by $A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$. Determine the algebraic multiplicity and geometric multiplicity of each of the eigenvalues.
 - (b) Diagonalize the following matrix and hence find A^6 , where $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$. 6 + 6 = 12
- 3. (a) Find the singular value decomposition (SVD) of the matrix given by $A = \begin{pmatrix} 3 & 0 \\ 4 & 5 \end{pmatrix}$.
 - (b) Let $A = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$. Find a "real cube root" of A, that is, find a matrix B having real eigenvalues such that $B^3 = A$.

6 + 6 = 12

Group – C

- 4. (a) (i) Investigate if $S = \{(x_1, x_2 + 1, x_3, x_4) | x_1, x_2, x_3, x_4 \in \mathbb{R}\}$ forms a subspace of \mathbb{R}^4 .
 - (ii) Let *V* be the set of all ordered pairs (x, y) in \mathbb{R}^2 with vector addition defined as $(x_1, y_1) + (x_2, y_2) = (2x_1 - 3x_2, y_1 - y_2)$ and scalar multiplication defined as $\alpha(x_1, y_1) = \left(\frac{\alpha x_1}{3}, \frac{\alpha y_1}{3}\right)$. Discuss whether *V* is a vector space or not.
 - (b) Show whether the given sets of vectors are identical or not: $S = span \{(1, 2, -1), (-3, 0, 0)\}, T = span\{(1, 0, 0), (1, 3, 0)\}.$

(3+3)+6=12

- 5. (a) Find the dimension and basis of the vector space spanned by the set of vectors $S = \{(1,3,5), (2,-1,4), (-2,8,2)\}.$
 - (b) Determine whether the vectors $v_1 = (1, 1, -2, -2), v_2 = (2, -3, 0, 2),$

MATH 4182

B.TECH/AEIE/CSE/7TH SEM/MATH 4182/2020

 $v_3=(-2,0,2,2), v_4=(3,-3,-2,2)$ are linearly dependent or independent in $\mathbb{R}^4.$

6 + 6 = 12

Group – C

6. (a) Consider f(t) = 3t - 5 and $g(t) = t^2$ in the polynomial space P(t) with inner product $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$, $\forall f, g \in P(t)$. Find (i) $\langle f, g \rangle$ (ii) ||f|| and ||g||.

(b) Consider the vector space P(t) with inner product $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$. Apply Gram-Schmidt algorithm to the set $\{1, t, t^2\}$ to obtain an orthogonal set with integer coefficients.

(2 + 4) + 6 = 12

7. (a) Find the QR factorization of the matrix $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

(b) Find an orthogonal matrix *P* whose first row is $(\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$.

6 + 6 = 12

Group – E

- 8. (a) Determine whether the transformations given below are linear transformations or not:
 - (i) $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that T(x, y) = (0, 0, 0)
 - (ii) $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that T(x, y) = (1, 1, 1).
 - (b) Let $f: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by f(x, y, z) = (x + 2y z, y + z, x + y 2z). Find a basis and the dimension of (i) the image of f, and (ii) the kernel of f.

6 + (3 + 3) = 12

- 9. (a) Verify the rank-nullity-dimension theorem for the linear transformation defined by f(x, y, z, w) = (x y + z + w, x + 2z w, x + y + 3z 3w).
 - (b) Let *T* be a linear operator in \mathbb{R}^3 defined by $T(x_1, x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_2 + 4x_3).$ Find the matrix of *T* in the ordered basis $\{\alpha_1, \alpha_2, \alpha_3\}$ where $\alpha_1 = (1, 0, 1), \alpha_2 = (-1, 2, 1)$ and $\alpha_3 = (2, 1, 1).$

6 + 6 = 12

Department & Section	Submission link:
AEIE	https://classroom.google.com/c/MTE5MjY3MzE1OTQ5/a/MjcxNDc4N <u>Tc0NjYz/details</u>

MATH 4182

B.TECH/AEIE/CSE/7TH SEM/MATH 4182/2020

CSE A	https://classroom.google.com/c/MTQxMTE3NTM4MTM2/a/MjcxNDc <u>4NTc0NTQ5/details</u>
CSE B	https://classroom.google.com/c/MTE5MjY3MzE10TQ5/a/MjcxNDc4N <u>Tc0NjIx/details</u>
CSE C	https://classroom.google.com/c/MTQxMTE3NTM4MTM2/a/MjcxNDc <u>4NTc0NTQ5/details</u>

Backlog students:

Submission		https://classroom.google.com/c/MjA00Tk4NDc2MDI0/a/MjY1MjAxN
	link	zE2Mzgw/details
	Classroom	https://classroom.google.com/c/MTQxMTE3NTM4MTM2?cjc=nxrspfy
	link	