M.TECH/VLSI/1ST SEM/VLSI 5101/2021

DIGITAL VLSI IC DESIGN (VLSI 5101)

Time Allotted : 3 hrs

1.

Full Marks: 70

 $10 \times 1 = 10$

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

Choose the correct alternative for the following:

•	Chiots	be the correct an		, 10110 10115		10 ** 1 = 10				
	(i)	According to Mo every	ore's Law, the nu	mber of transi	of transistor per chip gets doubled in					
		(a) 12 Months	(b) 18 Months	(c) 24 Months	s (d) 6 M	onths				
	(ii)	Pentium 4 chip fa (a) VLSI	ll under which cat (b) ULSI	tegory as shown (c) GSI	n below (d) TSI					
	(iii)	Value of "Lambda (a) 130nm	a" in 130nm Proce (b) 65nm	ss Node is (c) 90nm	(d) 100	nm				
	(iv)	For a Standard Co (a) Width is fixed (c) Both Height a	-		ght is fixed e of Above					
	(v)	Minimum Numbe (a) 10	er of Transistors ir (b) 12	n CMOS logic Y = (c) 14	= AB + CDE i (d) 8	S				
	(vi)	The NMOS Trans (a) Resistance (c) Short Circuit	istor in its linear r	egion can be m (b) Current So (d) Voltage So	ource					
	(vii)	With decrease of (a) Increase (c) Remains Same	V _{DD} , the output tra	ansition delay c (b) Decrease (d) Decrease						
	(viii)	KL Algorithm is r (a) Routing (c) Logic Synthes		(b) Partitionii (d) High Leve	0					
	(ix)	The output of Phy (a) Logical Netlis	-	Diagram	(c) RTL	(d) Layout				

M.TECH/VLSI/1ST SEM/VLSI 5101/2021

(x) 0.7 Technology scaling enables Layout area scaling of
 (a) 0.75
 (b) 0.45
 (c) 0.49
 (d) 0.65.

Group - B

- 2. (a) What are the various Capacitance Components of a MOS Transistor? [(CO1) (Remember/LOCQ)]
 - (b) How VTC of CMOS inverter will change if Width of PMOS is increased? [(CO1) (Apply/IOCQ)]
 - (c) For a CMOS Inverter $V_{OH} = 5V$, $V_{OL} = 0V$, $V_{IH} = 3.7V$, $V_{IL} = 2.1V$. Find the Value of NM_H and NM_L? [(CO1) (Apply/IOCQ)]

4 + 4 + 4 = 12

- 3. (a) Implement Layout of CMOS inverter using Standard Cell Layout Topology and show all the layers. [(CO2) (Apply/IOCQ)]
 - (b) Explain the difference between "Micron based Design Rule" and "Lambda Based Design Rule"? [(CO2) (Understand/LOCQ)]
 - (c) Implement the schematic and Stick Diagram of 3 input NOR gate. [(CO2) (Apply/IOCQ)]

4 + 4 + 4 = 12

Group - C

- 4. (a) Draw Flow Diagram of VLSI Design Cycle. [(CO3) (Remember/LOCQ)]
 - (b) Draw Flow Diagram of Front End Design Flow. [(CO5) (Understand/LOCQ)]
 - (c) Write VHDL behavioural model for a Rising Edge Triggered D Flip Flop. [(CO4) (Apply/IOCQ)]

4 + 4 + 4 = 12

- 5. (a) Draw VTC Curve for CMOS Inverter and show various Regions. [(CO1) (Understand/LOCQ)]
 - (b) Implement Dynamic Circuit topology of 6 input NOR gate. [(CO1) (Apply/IOCQ)]
 - (c) Implement f = A+B Boolean logic using Transmission Gate. [(CO1) (Apply/IOCQ)]

4 + 4 + 4 = 12

Group - D

- 6. (a) Draw flow diagram of High Level Synthesis. [(CO5) (Remember/LOCQ)]
 - (b) Implement the BDD Diagram for function f = abc + ab'c + a'bc' + a'b'c' using Ordering of $a \le b \le c$. [(CO5) (Evaluate/HOCQ)]
 - (c) Create the ROBDD Diagram and the corresponding optimized Boolean expression. [(CO5) (Evaluate/HOCQ)]

4 + 4 + 4 = 12

7. (a) Write VHDL code of Behavioural Modelling of a 2:1 Multiplexor. [(CO4)(Apply/IOCQ)]

M.TECH/VLSI/1ST SEM/VLSI 5101/2021

- (b) Write VHDL code of Behavioural Modelling of a 2 Input NOR Gate. [(CO4)(Apply/IOCQ)]
- (c) Explain Technology Library Mapping for Logic Synthesis. [(CO5)(Analyze/IOCQ)]

4 + 4 + 4 = 12

Group - E

- 8. (a) Why CMOS Transmission gate is used instead of NMOS pass transistor logic? [(CO1) (Analyze/IOCQ)]
 - (b) Implement Circuit of a negative edge triggered D-Flip Flop. [(CO1) (Apply/IOCQ)]
 - (c) Implement Circuit of 10 input OR gate using Domino Circuit. [(CO1) (Apply/IOCQ)]

4 + 4 + 4 = 12

- 9. (a) Draw Flow Diagram of Physical Layout Automation. [(CO6) (Remember/LOCQ)]
 - (b) For below Channel Routing Problem, draw Horizontal Constraint Graph (HCG) and Vertical Constraint Graph (VCG)
 Terminal Connection is as follows:
 11122563040 ----- Upper Boundary
 25055330604 ----- Lower Boundary
 0 means no Connection.

Assume HV Layer (V = Metal 1, H = Metal 2). [(CO6) (Apply/IOCQ)]

(c) Provide Optimum Channel Routing Solution for above case using Left Edge Algorithm. [(CO6) (Evaluate/HOCQ)]

4 + 4 + 4 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	29.2%	58.3%	12.5%

Course Outcome (CO):

After the completion of the course students will be able to

CO1. Students will learn CMOS Circuit used in Digital VLSI Domain

- CO2. Students will learn Physical Layout Design of CMOS Standard Cell
- CO3. Students will learn Digital VLSI Design Methodology
- CO4. Students will learn HDL coding
- CO5. Students will learn EDA High Level and Logic Level Synthesis Algorithms
- CO6. Students will learn EDA Physical Place and Route Automation Algorithms

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question

Department & Section	Submission Link
VLSI	https://classroom.google.com/c/NDE3NTE0MjU4MDIw/a/NDY4MDAyMzQ1MTYw/details