B.TECH/ME/7TH SEM/MECH 4126/2021

RENEWABLE ENERGY SYSTEMS (MECH 4126)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)						
	Choos	e the correct alternative for the following:		10 × 1 = 10		
	(i)	 Energy conservation means [CO1] (a) reducing energy consumption by reducing (b) reducing energy consumption without consof production (c) reducing the output (d) increasing the output. 				
	(ii)	The change in entropy for a reversible adiabatic (a) zero (b) minimum (c)	c process is [CO1] infinite	(d) unity.		
	(iii)	 Energy loss of a flywheel may be reduced by [Content of the content of t	-	tically levitated		
	(iv)	In evacuated tube collectors [CO3] (a) both conduction and convection losses are (b) only conduction losses are suppressed (c) only convection losses are suppressed (d) only radiation losses are suppressed.	suppressed			
	(v)	The turbine used in a tidal range plant is [CO4] (a) Francis turbine (c) Kaplan turbine	(b) Propeller turl (d) Pelton turbin			
	(vi)	The range of wind speed suitable for rotary win (a) 0-5m/s (c) 25-50m/s	nd power generato (b) 5-25m/s (d) 50-75m/s.	r is [CO4]		

1.

В.Т	ECH/M	E/7 TH SEM/MECH 4	126/2021		
	(vii)	Linear velocity of (a) aω	a particle at the crest (b) a/ω	of a wave is [CO4] (c) ω/a	(d) a+ω.
	(viii)	The power availab	ole in the wind will be _ (b) 4 times	, if the wind spe (c) 8 times	eed is doubled [CO4] (d) 16 times.
	(ix)	(a) blade tip spe(b) blade tip spe(c) rotor angular	Fa wind turbine is the ed and rotor angular sed and incoming wind repeed and incoming wind repeed and downstrea	peed speed wind speed	
	(x)	(a) high efficience(b) low efficience(c) low efficience	rized as having [CO5] by and low installation y and high installation y and low installation by and high installation	cost	
			Group – E	3	
2.	(a) (b)	What is per capita energy consumption? How it is related with standard of living? [(CO1) (Understand/LOCQ)] Why thermodynamic analysis plays an important role in determining the performance of non-conventional power generation? [(CO1)(Evaluate/HOCQ)] $6+6=12$			
3.	(a)	Why energy stora [(CO2) (Understa	ige is necessary in the nd/LOCQ)]	context of variable de	mand?
	(b)	-	ain advantages and l	imitations of battery	storage systems? $6 + 6 = 12$
			Group - (
4.	(a)	The following obs	servations were made		
	(~)	Theoretical maximal Average measure Solar radiation for Constants: a = 0.2	num possible sunshin d length of a day durin r a clear day, H ₀ = 210	e hours = 9.5 h ng April = 9.0 h 0 kJ/m²/day	yze/IOCO)]
	(b)		try and shape of an eff		· · · · · ·

[(CO3) (Analyze/IOCQ)] What is the future prospect of solar water desalination systems? (b)

What is the basic difference between active and passive solar heating system?

[(CO3)(Evaluate/HOCQ)]

[(CO3)(Create/HOCQ)]

6 + 6 = 12

4 + 8 = 12

(a)

5.

Group - D

- 6. (a) Briefly discuss the reasons behind the local wind circulation. [(CO4) (Remember/LOCQ)]
 - (b) Evaluate the applicability of small wind turbines in rural region. [(CO5)(Evaluate/HOCQ)]

6 + 6 = 12

- 7. (a) What is plate tectonic theory and how is it related to Geothermal energy? [(CO4)(Remember/LOCQ)]
 - (b) Discuss the working principle of vapour-dominated Geothermal electric power plant. [(CO4)(Analyze/IOCQ)]

6 + 6 = 12

Group - E

- 8. (a) Explain the working of Single-basin single-effect tidal plant. [(CO4)(Remember/LOCQ)]
 - (b) What are the main hurdles in the development of tidal energy? [(CO5)(Analyze/IOCQ)]

6 + 6 = 12

- 9. (a) What types of sites are considered suitable for wave power development? [(CO6)(Understand/LOCQ)]
 - (b) What are the relative advantages and limitations of floating and shore-based OTEC plants? [(CO6)(Analyze/IOCQ)]

6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	37%	35%	28%

Course Outcome (CO):

After the completion of the course students will be able to

- CO1: Describe the fundamentals and characteristics of various renewable energy sources.
- CO2: Explain the technological basis for harnessing and storing renewable energy sources.
- CO3: Analyze the characteristics of solar energy systems.
- CO4: Analyze the characteristics of non-solar renewable energy systems.
- CO5: Justify utilization of various renewable energy resources.
- CO6: Formulate for implementation of various renewable energy resources.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question

Department & Section	Submission link:
ME	https://classroom.google.com/c/NDA1MjM1NjQ1Mzky?cjc=3squdyb