B.TECH/ME/7TH SEM/MECH 4128/2021 COMPUTATIONAL METHODS IN ENGINEERING (MECH 4128)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:			10	× 1 = 10			
	(i)	During computation, (a) Round off error ir (c) Truncation error	ncreases	e [CO1 (Remember/LOCQ)] (b) Truncation error decreases (d) both the error decreases.				
	(ii)	The number of signif (a) 4	icant digits in 0.0099 is [((b) 5	CO1 (Recognize/LOCQ)] (c) 2	(d) 3.			
	(iii)	In which method, the constant coefficient matrix will be unaltered during rowoperation [CO1 (Classify/LOCQ)](a) Gauss Elimination(b) LU decomposition(c) Both (a) and (b)(d) Matrix inversion.						
	(iv)	 In LU decomposition method [CO2 (Remember /LOCQ)] (a) L and U matrices can be found by two different calculation (b) L can be automatically found if U is calculated (c) U can be automatically found if L is calculated (d) L and U need not to be found under any circumstances. 						
	(v)	A non-polynomial equation can be estimated by [CO3 (Understand/LOCQ)](a) Linear regression(b) nonlinear regression(c) polynomial regression(d) multiple linear regression.						
	(vi)	In polynomial regres (Classify/LOCQ)] (a) n+1	ssion of order n, number (b) n	of regression equations (c) n-1	s are [CO2 (d) n+2.			
	(vii)		ile, the result of integration th [CO4 (Remember/LOC (b) h/3		functional (d) h/4.			
(viii) Which of the following statement is <u>incorrect</u> a [CO5 (Describe/LOCQ)]				about numerical method	s?			

MECH 4128

B.TECH/ME/7TH SEM/MECH 4128/2021

- (a) Numerical methods can be used to solve any differential equation
- (b) Analytical solutions of differential equations are generally very difficult to obtain and hence numerical methods are used.
- (c) Solutions obtained by numerical methods are always exact solutions.
- (d) The domain of problem is discretized in finite number of grids and the solution is obtained at the nodal points.

(ix) The order and degree of the ordinary differential equation $\frac{d^4y}{dx^4} + 3\left(\frac{dy}{dx}\right)^5 + 5y = 0$ are respectively [CO6 (Classify/LOCQ)] (a) 1; 5 (b) 4; 5 (c) 4; 1 (d) 5; 1.

(x) Which of the following statement is true about PDE $\frac{\partial^2 U}{\partial x^2} - \frac{\partial^2 U}{\partial y^2} - \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} = 0$: [CO5 (Identify/LOCQ)] (a) It is parabolic in nature (b) It is hyperbolic in nature (c) It is an instance of Laplace equation (d) It is an instance of Poisson equation.

Group – B

2. (a) Newton's law of cooling says that the temperature of a body changes at a rate proportional to the difference between its temperature and that of the surrounding medium.

$$\frac{dT}{dt} = k(T - T_a)$$

Where T = the temperature of the body (0 C), t = time (min), k is proportionality constant (per minute) and T_a = the ambient temperature (0 C). Suppose that a cup of coffee originally has a temperature of 85 0 C. Use Euler's numerical method to compute the temperature from t =0 to 10 min, using a step size of 2 min. Take T_a = 25 0 C and k = 0.015 /min. [(CO1) (Apply/IOCQ)]

(b) Write the function of significant digits in numerical analysis. [(CO1) (Classify/LOCQ)]

8 + 4 = 12

3. (a) Use Gauss Elimination process to solve the following set of linear equations. Find out the digits up to 2 decimal places accurately. [(CO2) (Solve/IOCQ)]

$$10x + 2y - z = 273x + 5y - 2z = 61.5x + y + 6z = -21.5$$

(b) Use LU Decomposition process to solve the following set of linear equations. [(CO2) (Solve/IOCQ)]

$$8x + 2y - 2z = -2$$

$$10x + 2y + 4z = 4$$

$$12x + 2y + 2z = 6$$

6 + 6 = 12

Group – C

4. (a) Dynamic viscosity of water is related to temperature in the following manner.
 MECH 4128 2

B.TECH/ME/7TH SEM/MECH 4128/2021

Temperature (⁰ C)	0	5	10	20	30	40
Dynamic Viscosity (Pa-S) 1.	.79	1.52	1.31	1.02	0.79	0.65

[(CO3) (Implement/IOCQ)]

(b) Using linear regression find out the equation of a straight line which is best fit to the following data points. Here q = f(p) [(CO3) (Apply/IOCQ)]

0							_ ~
р	0	2	3	4	5	6	
q	1	6	5	8	12	11	

7 + 5 = 12

5. (a) Six different values of stresses for fracture times are plotted during an experiment. Predict the value of fracture time for an applied stress of 17 kg/mm² using Lagrange interpolating polynomial. [(CO3) (Solve/IOCQ)]

Applied Stress (kg/mm ²)	5	10	15	20	25	30	
Fracture time (hr.)	40	30	25	40	18	20	

(b) Using linear regression find out the equation of a straight line which is best fit to the following data points. [(CO3) (Solve/IOCQ)]

Х	5	7	8	11	15	20
у	20	31	36	45	66	87

7 + 5 = 12

Group – D

6. (a) The explicit form of error function is written below.

$$erf(a) = \frac{2}{\sqrt{\pi}} \int_0^a e^{-x^2} dx$$

Use two point Gauss quadrature to estimate erf (1.5). Find the relative percentage error if the exact value of erf (1.5) = 0.966105. [(CO4) (Implement/IOCQ)]

(b) Using Trapezoidal rule, evaluate the following integral with 4 intervals.

$$\int_0^3 (5 + 3\cos x) \, dx$$
[(CO4) (Implement/IOCQ)]

6 + 6 = 12

- 7. (a) Use the Taylor series expansion to evaluate the integral of $y' 2y = 3e^x$; y(0) = 0 at (i) x = 0.1 (0.1) 0.3 (ii) x = 1.0; 1.1 [Retain terms up to x^5]. [(CO5) (Implement/IOCQ)]
 - (b) Evaluate the initial value problem $y' y^2 = 0$; y(0) = 1 by the Euler's method at x = 0.1 and x = 0.2. [(CO5) (Formulate/HOCQ)]

(5+2)+5=12

Group – E

8. (a) Match the following: (I) 2 – D Laplace equation: $u_{xx} + u_{yy} = 0$ (A) Parabolic (II) 1 – D wave equation: $u_{tt} = c^2 u_{xx}$ (B) Hyperbolic

MECH 4128

B.TECH/ME/7TH SEM/MECH 4128/2021

(III) 1 – D transient heat conduction equation $u_t = c^2 u_{xx}$ **(C)** Elliptic

[(CO6) (Classify/LOCQ)]

(b) Use the classical 4th order Runge-Kutta method to find the solution of the IVP $y' - y^2 = 0$; y(0) = 1 on [0,1]. Show the calculations clearly in tabular form till the 5th iteration step. Take h = 0.2. [(CO5) (Implement/IOCQ)]

3 + 9 = 12

9. (a) Solve the initial boundary-value problem ^{∂f}/_{∂t} = 2 ^{∂²f}/_{∂x²}; 0 ≤ x ≤ 6, t > 0 by the Schmidt explicit method. The two boundary conditions are f(x = 0, t) = 10 and f(x = 6, t) = 18. The initial condition is f(x, t = 0) = x²/2. Consider the spatial increment h = 1 and the time increment k = 1/8. Compute the field values for 0 ≤ t ≤ 1. Estimate the field values as t → ∞. [(CO6) (Formulate/HOCQ)]
(b) Find the condition for the second order PDE u = 2xu = (1 - y²)u = 0 to

(b) Find the condition for the second order PDE $u_{xx} + 2xu_{xy} + (1 - y^2)u_{yy} = 0$ to be hyperbolic. [(CO6) (Apply/IOCQ)]

9 + 3 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	16.9%	69.8%	13.2%

Course Outcome (CO):

After the completion of the course students will be able to

CO 1: Apply different mathematical models to obtain numerical solutions and classify different types of error.

CO 2: Analyze and solve a system of linear algebraic equations by different methods and find out the roots.

CO 3: Implement the regression and interpolation methods for curve fitting and apply different types of optimization techniques to solution of problems.

CO 4: Use different numerical integration methods for practical problems.

CO 5: Classify Initial-value and Boundary-value problems in order to formulate their solutions, implement different methods for their solutions, and solve Eigen value problems applied to physical systems.

CO 6: Classify linear, second-order partial differential equations (PDEs) as elliptic, parabolic, or hyperbolic, and apply the Finite Difference Method to formulate the solutions of different classes of PDEs.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question

Department & Section	Submission link:				
ME	https://classroom.google.com/c/NDA1NjAxNjQ00Dc3/a/NDYz0DI2NTM0MjE5/details				