# В.ТЕСН/МЕ/5<sup>тн</sup> SEM/MECH 3131/2021 FLUID POWER CONTROL (MECH 3131)

# **Time Allotted : 3 hrs**

Full Marks: 70

 $10 \times 1 = 10$ 

### Figures out of the right margin indicate full marks.

# Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

# Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following:
  - (i) Source for generating high pressure oil in a hydraulic system is called [C01]
     (a) pump
     (b) actuator
     (c) compressor
     (d) blower
  - (ii) 'Power Pack' is a component of [CO1]
    (a) Electrical system
    (c) Pneumatic system
  - (iii) Hydraulic Power output is defined as [CO5]
     (a) Pressure × Discharge
     (c) Force × Discharge
- (b) Force × Displacement

(b) Hydraulic system

(d) Mechanical system.

- (d) Pressure × Displacement.
- (iv) Cushioning in hydraulic cylinder is done to [CO2]
  - (a) prevent shock due to stopping loads at the end of the piston stroke
  - (b) prevent heat due to seal friction
  - (c) increase the velocity of the cylinder
  - (d) prevent overloading of the cylinder.

# (v) Which of the following mounting is used to allow angular movement of hydraulic cylinder? [CO2]

- (a) Flange mounting
- (c) Clevis mounting

- (b) Foot mounting
- (d) Flush side mounting.
- (vi) In an axial piston motor, the piston [CO2]
  - (a) reciprocates parallel to the axis of the cylinder block.
  - (b) reciprocates perpendicular to the axis of the cylinder block.
  - (c) reciprocates at any angle to the axis of the cylinder block.
  - (d) rotates about the axis of the cylinder block.
- (vii) The speed control circuit best suited in application where negative loading may occur is [CO4]
   (a) meter-in circuit
   (b) unloading circuit

**MECH 3131** 

1

#### B.TECH/ME/5<sup>TH</sup> SEM/MECH 3131/2021

|        | (c) meter-out circuit                                                                                                                                                                                    |                                                | (d) synchronization circuit.      |            |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------|------------|
| (viii) | Continuity equation (a) mass                                                                                                                                                                             | n is based on principle of con<br>(b) momentum | nservation of [CO3]<br>(c) energy | (d) force. |
| (ix)   | A shoe plate is a component attached to [CO2](a) gear(b) vane pump(c) inline axial piston pump(d) radial piston pump.                                                                                    |                                                | p.                                |            |
| (x)    | A switch that keeps the contact open or close, based on the system pressur<br>known as [CO6](a) pressure relief valve(b) pressure reducing valve<br>(c) limit switch(c) limit switch(d) pressure switch. |                                                | oressure is<br>svalve             |            |

#### Group – B

- (a) State the basic components required in a pneumatic circuit. Compare the advantages and disadvantages of a hydraulic system and a pneumatic system.
   [(C01)(Remember/LOCQ)]
  - (b) Compare the use of fluid power to a mechanical system by listing the advantages and disadvantages of each system. [(CO1)(Understand/LOCQ)]

(3+4)+5=12

- 3. (a) Explain with neat sketch, the working principle of a radial piston pump used in fluid power systems. [(CO2)(Understand/LOCQ)]
  - (b) Draw the performance curves of a positive displacement rotary pump and mention the factors affecting the actual flow rate. [(CO2)(Remember/LOCQ)]

7 + 5 = 12

#### **Group – C**

4. (a) For the hydraulic system shown in Figure 1, the following data are given:

The pump is adding 8 kW energy to the fluid (i.e. the hydraulic power of the pump).

The pump flow rate is 0.002m<sup>3</sup>/s. The pipe has an inside diameter of 25 mm.

The specific gravity of oil is 0.8.

Point 2 is at an elevation of 0.6 m above the oil level, that is, point 1.

The head loss due to friction in the line between points 1 and 2 is 15 m.

Determine the fluid pressure at point 2, the inlet to the hydraulic motor. Neglect the pressure drop at the strainer. The oil tank is vented to atmosphere. [(CO3)(Evaluate/HOCQ)]



Fig.1

#### B.TECH/ME/5<sup>TH</sup> SEM/MECH 3131/2021

(b) A hydrostatic transmission operating at 100 bar pressure has the following characteristics:

For Pump,  $V_{D, pump} = 100 \text{ cm}^3$ ,  $\eta_V = 85\%$ ,  $\eta_m = 90\%$ ,  $N_{pump} = 1000 \text{ rpm}$ For Hydraulic motor,  $\eta_V = 94\%$ ,  $\eta_m = 92\%$ ,  $N_{motor} = 500 \text{ rpm}$ . Symbols have their usual meaning.

Find the (i) volumetric displacement of motor V<sub>D, motor</sub> and (ii) actual output torque delivered by motor. [(CO5) (Evaluate/HOCQ)]

6 + 6= 12

- 5. (a) A hydraulic cylinder is to compress a body down to bale size in 10 sec. The operation requires a 3 m stroke and a 40000 N force. If a 10MPa pump has been selected, assuming the cylinder to be 100% efficient, find (i) the required piston area (ii) the necessary pump flow rate (iii) the hydraulic power delivered to the cylinder (iv)Assuming a 400 N friction force and a leakage of 1 LPM, what will be the necessary pump flow rate and total flow rate. [(CO5)(Evaluate/HOCQ)]
  - (b) Define volumetric efficiency, mechanical efficiency and overall efficiency of hydraulic motor. Why the actual flow rate required by a hydraulic motor is higher than the theoretical flow rate? [(CO5)(Understand/LOCQ)]

7 + (3 + 2) = 12

# Group – D

- 6. (a) Explain (with diagram) the synchronization operation of two cylinders in a hydraulic circuit. [(CO4)(Analyse/IOCQ)]
  - (b) What is meant by 'pump unloading'? Draw and briefly explain a pump unloading circuit with ANSI symbols. [(CO4)(Analyse/IOCQ)]

6 + (2 + 4) = 12

- 7. (a) A double acting cylinder is hooked up in a regenerative circuit. The relief valve is set at 100 kgf/cm<sup>2</sup> pressure. The piston area is 130 cm<sup>2</sup> and the rod area is 65cm<sup>2</sup>. If the pump flow is 100 litre/min, find the cylinder speed and load-carrying capacity during (i) extending stroke (ii) retracting stroke. [(CO5)(Evaluate/HOCQ)]
  - (b) With neat sketch, briefly discuss the working principle and function of Non-Pressure compensated Flow Control Valve. [(CO2) (Remember/LOCQ)]

(3+3)+6=12

# Group – E

- 8. (a) Briefly discuss the factors to be considered for selection of pipeline in pneumatic systems. [(CO6)(Remember/LOCQ)]
  - (b) Draw a pneumatic circuit diagram for operation of a double acting cylinder and discuss about its performance. [(CO4)(Analyse/IOCQ)]

6 + 6 = 12

#### B.TECH/ME/5<sup>TH</sup> SEM/MECH 3131/2021

- 9. (a) What is the function of limit switch? Draw the symbols of different limit switches. [(CO6)(Understand/LOCQ)]
  - (b) Explain the method of control of a double acting cylinder using a solenoid controlled Direction Control Valve and limit switches.
     [(CO6)(Understand/LOCQ)]

#### (2+4)+6=12

| Cognition Level         | LOCQ  | IOCQ   | HOCQ   |
|-------------------------|-------|--------|--------|
| Percentage distribution | 55.2% | 18.75% | 26.05% |

#### **Course Outcome (CO):**

After the completion of the course students will be able to

| CO 1 | Describe the term fluid power, its advantages, the basic components and working  |
|------|----------------------------------------------------------------------------------|
|      | fluid used in fluid power systems.                                               |
| CO 2 | Explain different types of pumps, actuators, valves and other components used in |
|      | hydraulic and pneumatic circuits.                                                |
| CO 3 | Relate the fundamental laws of fluid mechanics with fluid power and control      |
|      | systems.                                                                         |
| CO 4 | Examine various fluid nower circuits                                             |
|      | Examine various nulu power en cures.                                             |
| CO 5 | Formulate the performance parameters of different components used in fluid power |
|      | systems.                                                                         |
| CO 6 | Appraise the use of different components in pneumatic systems and electrical     |
|      | devices to control fluid power circuits.                                         |

\*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question

| Department<br>& Section | Submission link:                    |  |
|-------------------------|-------------------------------------|--|
| ME                      | https://forms.gle/7q6goeCwh37E7hfH9 |  |