MATERIAL SCIENCE AND TECHNOLOGY (AEIE 2111)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choos	Choose the correct alternative for the following:						
	(i)	Which one (a) van der (c) Metallic	of the followir Waals bond bond	ng is NOT a stro	ong bond? (b) Covalent bond (d) Ionic bond.			
	(ii)	Coordinatio (a) 2	on number in s (b) 4	simple cubic cr (c) 6	ystal structure (d) 8			
	(iii)	Visible ligh (a) 0.39 – 0 (c) 0.39 – 0	t's wavelength .77 mm .77 nm	n range:	(b) 0.39 – 0.77 μm (d) 0.39 – 0.77 cm.			
	(iv)	Example fo (a) Strain h (c) Fiber st	r strengthenin ardening rengthening	ng mechanism i	single-phase material (b) Precipitation hardening (d) dispersion strengthening			
	(v)	Above the diagram (a) Tie-line (c) Solidus	following line	e, liquid phase	e exist for all compo (b) Solvus (d) Liquidus	ositions in a phase		
	(vi)	Engineerin (a) Proport (c) Yeild po	g stress-strain ional limit bint	curve and Tru	e stress-strain curve a (b) Elastic limit (d) Tensile strengt	are equal up to h point		
	(vii)	The degree of freedom at triple point in unary diagram for water (a) 0 (b) 1 (c) 2 (d) 3						
	(viii)	Fracture st (a) crack le (c) (crack le	ress (<i>of</i>) is pro ngth ength) ^{1/2}	(b) 1/crack length (d) (crack length ⁾⁻¹	/2.			

AEIE 2111

- Usually _____ is the initial stage of a component manufacturing. (ix) (a) Design (b) Conception (c) Material selection (d) Testing
- (x) One of characteristic properties of polymer material _____. (b) High mechanical strength (a) High temperature stability (c) High elongation
- (d) Low hardness

Group-B

- 2. (a) Compare among diamagnetic, paramagnetic and ferromagnetic materials with specific examples of each type. [(CO6) (Analyse/IOCQ)]
 - (b) Describe thermal expansion and define co-efficient of thermal expansion. [(CO1) (Understand/LOCQ)]/ [(CO1) (Remember/LOCQ)]
 - List the applications of advanced materials. (c)
 - [(CO1) (Remember/LOCQ)]

(3+3) + (2+1) + 3 = 12

- Three materials with uniform cross-sectional area of 2 m² are exposed to heat 3. (a) energy of 600W. The temperature gradients of the three materials are given as 1, 20 and 1000 K/m respectively. Estimate the thermal conductivities of the above materials and categorise them based on that. [(CO1) (Analyse/IOCQ)]
 - (b) List the applications of LED, LASERs and optical fibers. [(CO1) (Remember/LOCQ)]
 - (c) Examine the dielectric constant of a barium titanate crystal, which, when inserted in a parallel plate condenser of area 10 mm × 10 mm and distance of separation of 2 mm, gives a capacitance of 10⁻⁹ F. [(CO1) (Analyse/IOCQ)]

(3+1) + (2+2+2) + 2 = 12

Group - C

- (a) Define Burger' svector. Draw neat sketches illustrating the arrangement of 4. atoms around an edge dislocation and displayBurger'svector on the sketch of [(CO2)(Remember/LOCQ)]/[(CO2)(Apply/IOCQ)] aforesaid edge dislocation.
 - Estimate the line energy of dislocation in BCC iron. The burgers vector iniron is (b) of the $\frac{1}{2}$ <111> type. The shear modulus of iron is 80.2 GN/m². (The lattice parameter of BCC iron is 2.87 Å). [(CO2)(Analyse/IOCQ)]

(2+7) + 3 = 12

- 5. (a) The dislocation density in a Cu sample is increased by cold working from 10^9 Examine the free energy change during recrystallization. m/m^3 to $10^{13} m/m^3$. [(CO2) (Analyse/IOCO)]
 - Differentiate between slip and twining. [(CO2) (Analyse/IOCQ)] (b)
 - Discuss the restoration process in materials. [(CO2) (Understand/LOCQ)] (c)

3 + 3 + 6 = 12

Group - D

- 6. (a) Compare between ductile and brittle fracture based on fracture parameters. [(CO2) (Analyse/IOCQ)]
 - (b) Explain the stages of brittle fracture. [(CO2) (Analyse/IOCQ)]

6 + 6 = 12

- 7. (a) The Young's modulus of a certain material is 200 GN/m² and its true surface energy is 1.5 J/m².Thecrack length is 5 μ m. Calculate its fracture strength. If the actual fracture strength is 1 GN/m², then provide justification in support of the result. [(CO2) (Analyse/IOCQ)]/ [(CO2) (Evaluate/HOCQ)]
 - (b) Comment on the usefulness of phase diagram. [(CO3) (Evaluate/HOCQ)]

(4+2)+6=12

Group - E

- 8. (a) How steels are classified based on carbon content? Categorize stainless steels based on constituents of the microstructure.
 - [(CO6) (Understand/LOCQ)]/[(CO6) (Analyse/IOCQ)]
 - (b) Criticize the role of noble metals in engineering applications. [(CO5) (Evaluate/HOCQ)]
 - (c) Classify ceramics based on their compositions. [(CO4)(Understand/LOCQ)]

(3+3)+4+2=12

- 9. (a) Compare between thermoplastic and thermosetting materials. List moulding techniques employed in fabrication of polymers. [(CO6) (Analyse/IOCQ)]/[(CO4) (Remember/LOCQ)]
 - (b) Classify the corrosion in metals. [(CO5) (Understand/LOCQ)]
 - (c) Appraise the material recycling process. [(CO5) (Evaluate/HOCQ)]

(3+3)+4+2=12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	37.50%	43.75%	18.75%

Course Outcome (CO):

After the completion of the course students will be able to:

- 1. Explain the properties and structure of engineering materials.
- 2. Analyze defects in materials and their effect on engineering properties as well as limit their use in service.
- 3. Make use of phase diagrams to predict microstructures and also to understand precipitation hardening.
- 4. Compare & Evaluate the processing of engineering materials.

- 5. Choose the proper engineering material for defined field of applications with economic, environmental and societal considerations.
- 6. Determine the importance of material properties in engineering design.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question

Department & Section	Submission Link
AEIE	https://classroom.google.com/c/NDA1MzM5NTM4NzYz/a/NDY4MjQ3ODUzODcw/details