PHYSICS - II (PHYS 2111)

Time Allotted : 3 hrs

Full Marks: 70

 $10 \times 1 = 10$

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

(i)	If two operators <i>A</i> and <i>B</i> have simultaneous eigen states which of the followis correct?		
	(a) $[\hat{A}, \hat{B}] = -1$	(b) $[\hat{A}, \hat{B}] = 0$	
	(c) $\left[\hat{A}, \hat{B}\right] = -i\hbar$	(d) $\left[\hat{A}, \hat{B}\right] = \infty$	
(ii)	The state $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is an eigen state of		
	(a) $\hbar\omega \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$	(b) $\hbar \omega \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (d) $\hbar \omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	
	(c) $\hbar \omega \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	(d) $\hbar \omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	
(iii)	If A is a self-adjoint operator		
	(a) $\langle \boldsymbol{\psi} A \boldsymbol{\emptyset} \rangle = \langle \boldsymbol{\psi} \boldsymbol{A} \boldsymbol{\emptyset} \rangle$	(b) $\langle \boldsymbol{\psi} \mathbf{A} \boldsymbol{\emptyset} \rangle = \langle \boldsymbol{\emptyset} \mathbf{A} \boldsymbol{\psi} \rangle$	
	(c) $\langle \boldsymbol{\psi} \mathbf{A} \boldsymbol{\emptyset} \rangle \neq \langle \boldsymbol{\psi} \boldsymbol{A} \boldsymbol{\emptyset} \rangle$	(d) $\langle \boldsymbol{\psi} A \boldsymbol{\emptyset} \rangle = 1$	
(iv)	Ferrimagnetic materials can be described as im	-	
	(a) ferromagnets(c) paramagnets	(b) anti-ferromagnets(d) diamagnets.	
()		(u) trainagricts.	
(v)	The area of his hysteresis loss is a measure of (a) Permittivity	(b) Susceptibility	
	(c) Energy loss per cycle	(d) Magnetic flux	
(vi)	A lattice described by the following primitive ba	asis vector is	
	$\vec{a}_1 = 2(\hat{i} + \hat{j}), \vec{a}_2 = 2(\hat{j} + \hat{k}), \vec{a}_3 = 2(\hat{k} + \hat{i})$		
	(a) fcc with cube edge π	(b) fcc with cube edge 2π	
	(c) bcc with cube edge π	(d) bcc with cube edge 2π .	
(vii)	The span of first Brillouin zone of a crystal vibra		
	(a) $-\pi \le k \le \pi$	(b) $-\frac{\pi}{2} \le k \le \frac{\pi}{2}_{\pi}$	
	$(c) - \frac{\pi}{a} \le k \le \frac{\pi}{a}$	$(d) - \frac{\pi}{2a} \le k \le \frac{\pi}{2a}$	
0 0 4 4 4			

PHYS 2111

- (viii) A point in reciprocal space correspond to in real space(a) a unit cell(b) a point(c) a vector(d) a plane.
- (ix) For a NaCl crystal, mass of Na and Cl atoms are m and M respectively, the ratio of vibrational amplitude is (a) mM (b) -mM (c) m/M (d) -m/M
- (x) An electronic band is
 - (a) any range of energy levels
 - (b) energy levels where free electrons exist
 - (c) a range of energy level characterized by the existence of electrons
 - (d) all the above.

Group-B

- 2. (a) The hamiltonian operator for a two-state system is given by $H = a(|1\rangle\langle 1| - |2\rangle\langle 2| + |1\rangle\langle 2| + |2\rangle\langle 1|)$ where *a* is a number with the dimension of energy and $|1\rangle$ and $|2\rangle$ are orthonormal vectors. Find the energy eigen values. [(CO1)(Apply/HOCQ)]
 - (b) Use the normalization technique to normalize the wave function

$$\psi(x) = A e^{-\frac{\sigma x^2}{2}} e^{i kx}; -\infty \le x \le \infty \qquad [(C01)(Analyze IOCQ)]$$

- (c) The state of a quantum system at t = 0 is given by $|U\rangle = \frac{1}{\sqrt{3}}|u_1\rangle + \sqrt{\frac{2}{3}}|u_2\rangle$; where $|u_1\rangle$ and $|u_2\rangle$ are the ortho-normal eigen vectors with eigen values $\mp \hbar \omega$ respectively.
 - (i) Calculate the probability of finding the system in the states $|u_1\rangle$ and $|u_2\rangle$.
 - (ii) Examine the expectation value of the Hamiltonian.

[(CO1)(Analyze/IOCQ)]5 + 3 + (2 + 2) = 12

- 3. (a) Apply the normalization technique to normalize the wave function $\psi(x) = e^{-|x|} \sin ax$, *a* is a real constant. Calculate the probability of finding its position to the right of the point x = 1. [(CO1)(Apply/IOCQ)]
 - (b) Obtain the commutation relations for the following cases: $[\hat{p}_x, \hat{x}^n]; [\hat{L}^2, \hat{L}_z]$ [(C01)(Understand/LOCQ)]
 - (c) Calculate the uncertainty Δx in position of a quantum particle confined within an infinite potential well of width L having potential V = 0 for 0 < x < L and $V = \propto$ for x = 0 and x = L. [(CO1)(Analyse/IOCQ)]

(3+2) + (2+2) + 3 = 12

Group - C

4. (a) What kind of modifications do we need if we want to apply Curie-Weiss law to find an expression for magnetic susceptibility of antiferromagnets? Graphically show the variation of inverse susceptibility with temperature of any antiferromagnetic sample. [(CO2)(Understand/LOCQ)]

(b) Suppose $\overrightarrow{\mu_m^0}$ is the magnetic dipole moment of an individual atom in a paramagnetic sample kept in an absolute temperature *T*. If we keep that sample inside an external magnetic field \overrightarrow{B} what will be the probability of this magnetic dipole to make an angle between θ and $\theta + d\theta$ with the external magnetic field?

[(CO2) (Create/IOCQ)]

(c) Applying Hund's rule and Pauli's exclusion principle calculate the magnetic dipole moment of a Godolinium (Gd^{3+}) ion. (electronic configuration of Gd^{3+} is $4f^7$). [(CO2) (Analyse/IOCQ)]

(2+2)+4+4=12

5. (a) Using a thought experiment highlight the differences between a perfect conductor and a superconductor and hence explain Meissner effect.

[CO3 (Understand/LOCQ)]

(b) Applying Hund's rule and Pauli's exclusion principle explain that the Cr²⁺ ion does not have permanent magnetic dipole moment (atomic number of Cr is 24).

[CO3 (Analyze/IOCQ)]

(c) Write down the empirical formula to show the variation of London penetration depth with temperature of a superconducting sample explaining all the physical quantities involved in the expression. Graphically present your answer.

[CO3 (Understand/LOCQ)]

4 + 4 + (2 + 2) = 12

Group - D

- 6. (a) A 2-fold rotation plus a mirror plane is equivalent to an inversion, justify. Determine the linear density of atoms of bcc Ba along [110] direction. Atomic volume of Ba is 39.24 cm³/cell. [(CO4) (Analyse/HOCQ)]
 - (b) Illustrate [121], [120] directions on a cubic unit cell. Show that [121] is in the normal direction to (121) plane in a cubic crystal. [(CO4) (Understand/LOCQ)]
 - (c) Estimate the h, k, l values for (hkl) planes with an interplanar spacing of 1.246 Å in cubic Ni, having a = 3.524 Å. [(CO4) (Evaluate/IOCQ)]

 $(2+2) + (2 \times 2 + 2) + 2 = 12$

- 7. (a) Explain Ewald construction with diagram. (CO4) (Understand/LOCQ)
 - (b) Is Bragg's law a necessary and sufficient condition for diffraction to occur? Explain your answer with example. (CO4) (Understand/IOCQ)
 - (c) If energy required taking an atom from lattice site inside the crystal to lattice site on surface is 1 eV at temperature 1000 K, examine to calculate the ratio of number of vacancies to that of atoms. (CO4) (Analyze/IOCQ)
 - (d) Prove that the volume of the first Brillouin zone is $(2\pi)^3/V$, where V is the volume of crystal primitive cell. (CO4) (Evaluate/IOCQ)

4 + 3 + 2 + 3 = 12

Group - E

8. (a) Explain elastic and inelastic scattering of phonon. [(CO5) (Understand/IOCQ)]

PHYS 2111

- (b) Explain the condition for two phonons interacting to create third phonon. Describe the phonon dispersion relations from the inelastic scattering of neutrons with emission or absorption of phonon. [(CO5) (Create/IOCQ)]
- (c) For a CsCl crystal where mass of Cs and Cl atoms are m and M respectively, determine the ratio of vibrational amplitudes? Justify the name 'optical' of optical branch. [(CO5) (Analyse/HOCQ)]

(2+2) + (2+2) + (2+2) = 12

- 9. (a) If V(x) is periodic, prove that the Hamiltonian is also periodic. For Tf(x)=f(x+a), prove that H{T ϕ (x)}=E{T ϕ (x)}. (C05)(Evaluate/HOCQ)
 - (b) The energy-wave vector dispersion relation for a crystal of lattice constant a is given by $E(k) = bk^2 + c \cos ka$, where b, c are constants. Determine the expression for the velocity, effective mass of the electron, effective mass of hole as a function of *k*. For what value of *k* the velocity is the maximum?

(CO6)(Evaluate/HOCQ) (2 + 2) + (2 + 2 + 2 + 2) = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	25 %	54 %	20 %

Course Outcome (CO):

After the completion of the course students will be able to:

- 1. Understand the concept of mechanics of Quantum Particles and hence their strange behavior which ultimately imparting the knowledge of nano science and its applications in nanotechnology.
- 2. Understand magnetic properties and magnetic behaviour of materials which will enrich the industrial use of different materials for various purposes.
- 3. Understand the physics behind the superconducting properties of materials and their industrial and medical usefulness.
- 4. Understand the physics behind X-ray diffraction in crystalline structure of a material, and the different imperfection in it.
- 5. Understand the basic difference between the atomic structure of an isolated atom and atoms in solids differ and accordingly assures the electrical and thermal properties of solids.
- 6. Study the energy band formation in solids and the behavior of electron and hole in the bands.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question

Department & Section	Submission Link	
СНЕ	https://classroom.google.com/c/NDA1OTgxMDI5MjAy/a/NDc1MTQxMjQ0MTg2/details	
BACKLOG	CLASS ROOM LINK:https://classroom.google.com/c/NDc1MDgwMzg3MjI0?cjc=vxq2ael SUBMISSION LINK: https://classroom.google.com/c/NDc1MDgwMzg3MjI0/a/NDc1MDgwNDA4NTU5/details	