DIGITAL LOGIC (ECEN 2104)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choos	se the correct a	$10 \times 1 = 10$							
	(i)	If (24 + 17) = 4 (a) 5	0 then the base of (b) 6	f the nur (c) 9	nbers i	s (d) 11				
	(ii)	If a function is compliments F' (a) F'= $\pi(1,2,4,5,4)$ (c) F'= $\pi(0,3,6,7,4)$	shown as F(A, is given by. 8,9,10,11,15) 12,13,14)	B, C, D	D) =Σ ((b) F'= (d) F' :	[1,2,4,5,8,9,10] Σ (1,2,4,5,8,9, =Σ(0,3,6,7,8,9,	,11,15), 10,11,15 10,11,15	then its))		
	(iii)	With respect to a corresponding (a) Voltage Line (c) Tagged Wire	the input lines of a	a decode	ler, each of the output lines represents a (b) Maxterm (d) Minterm					
	(iv)	The logic family (a) CMOS (c) TTL	using the minimu	m powe	er is (b) RT (d) EC	L L				
	(v)	The S R flip flop are (a) Unequal (c) Undefined	goes to an indet	erminat	e state (b) Eq (d) Cli	when both it ual pped	s output	Q and Q'		
	(vi)	If the J and K inputs are shorted then the JK flip flop behaves as a (a) SR FF (b) D FF (c) T FF (d) JK Master Slave FF								
	(vii)	 The BCD adder adds another constant decimal value of after each addition based on conditions (a) 4 (b) 5 (c) 6 (d) 7 								

(viii)	A memory	system	uses	refresh	cycle	to	restore	its	contents,	then	type	of
	memory the	e system	is usi	ng is								
	(a) SRAM	(b) DRA	λM	(c) E	EEP	ROM		(d) US	SB		

- (ix) A Decoder with an enable input represents a functional
 (a) Encoder
 (b) Comparator
 (c) Demultiplexer
 (d) Multiplexer
- (x) Hexadecimal equivalent of the Octal number (775737264.75) is
 (a) FBBF.F4
 (b) 7F867FC.E3
 (c) 65DE7.74
 (d) 7F7BEB4.F4

Group - B

- 2. (a) The main stairway in a flat building has three switches to individually control the lights (switch on/off). Switch A is located at the top of the stairs, switch B is located halfway up the stairs and switch C is positioned at the bottom of the stairs. Design a logic network to control the lights on the staircase from each switch position. [(CO1) (Evaluate /HOCQ)]
 - (b) Given AB' + A'B = C show that AC' + A'C = B. [(CO1) (Understand /IOCQ)]

7 + 5 = 12

- 3. (a) Simplify using K-map in SOP form. $f(A,B,C,D) = \Sigma (1,2,4,5,9,10) + \Sigma d(6,7,8,13) (d=don't care).$ [(CO1) (Analyze /IOCQ)]
 - (b) Determine the canonical sum-of-products representations of the function f(x,y,z) = z + (x' + y) (x + y'). [(CO1) (Understand/LOCQ)]

6 + 6 = 12

Group - C

- 4. (a) Design a four input (D3-D0) priority encoder having priority in increasing order of sequence. Input D0 having the lowest, and D3 the highest priority.
 [(C01) (Evaluate/IOCQ)]
 - (b) Design a 4 input carry look ahead adder. Show the logic for carry propagation, carry generation, and the look ahead circuit. [(CO1) (Remember/LOCQ)]

6 + 6 = 12

- 5. (a) A 8 to 1 MUX is used to implement a function F(A,B,C,D). It has inputs A, B, C connected to selection lines S2, S1, and S0. The data inputs I0 to I7 are as follows. I0=I1=I5=D, I2=D', I6=I7=1, I3=I4=0. Determine the function F(A,B,C,D). [(CO1) (Evaluate/LOCQ)]
 - (b) Design a single stage BCD adder and explain why addition of six is necessary? [(CO1) (Understand/LOCQ)]
 - (c) Design a one bit Full adder using a 3 to 8 decoder and OR gates.[(CO1)(Remember/IOCQ)]

4 + 5 + 3 = 12

Group - D

- 6. (a) Design a clocked SR Flip flop with NOR gates and show its characteristic table . Add logic to convert it to a D flip flop. [(CO2) (Understand/HOCQ)]
 - (b) Explain the working principles of a Master Slave J K flip flop and explain with reasons why it is used. [(CO2) (Remember/IOCQ)]

6 + 6 = 12

- 7. (a) A sequential circuit has two D flip flops A and B, two inputs x, and y, and one output z. The flip flop input equations and the circuit output are as follows:
 DA = x'y + xA
 DB = x'B + xA
 - z = B
 - (i) Draw the logic diagram of the circuit
 - (ii) Tabulate the state table. [(CO3) (Evaluate/IOCQ)]
 - (b) Convert a J-K flip flop to a T flop. [(CO2) (Understand/LOCQ)]

8 + 4 = 12

Group - E

- 8. (a) Explain with a schematic the working principle of a 1 bit SRAM and a DRAM and compare their relative merits and demerits. [(CO4) (Remember/HOCQ)]
 - (b) A combinational circuit is described by the following functions F1 (A,B, C) = Σ (3, 5, 6, 7) F2 (A, B, C) = Σ (0, 2, 4, 7) Implement the circuit with PLA having three inputs four product terms and two outputs after simplification. [(CO4) (Analyze/HOCQ)]

6 + 6 = 12

- 9. (a) Describe a CMOS inverter circuit and discuss its advantage over nMOS and pMOS circuits using Vout versus Vin map. [(CO5) (Evaluate/IOCQ)]
 - (b) In the CMOS inverter what are the transient capacitance effect causing switching delay. [(CO5) (Understand/LOCQ)]
 - (c) Show the diagram of CMOS NAND2 gate. [(CO6) (Remember/IOCQ)]

5 + 5 + 2 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	33.33%	44.44%	22.22%

Course Outcome (CO):

After the completion of the course students will be able to

- 1. Learn Binary Number system, and logic design using combinational gates.
- 2. Design applications of Sequential Circuits.
- 3. Design Finite State Machines.

ECEN 2104

- 4. Learn Memory classifications.
- 5. Learn basics of CMOS logic.
- 6. Learn various digital component design as used in VLSI applications

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question

Department & Section	Submission Link
CSBS	https://classroom.google.com/u/0/w/NDA1Mzc1ODcwOTQw/tc/MjI3ODg5Njg5Njc2
CSE - A	https://classroom.google.com/w/NDE3Mjk2MzQ4NDE1/tc/NDc1MTQ0MDYzNzcy
CSE - B	https://classroom.google.com/w/NDA1MjQ2ODA2MDYw/tc/NDc1MTYyOTkzMzg4
CSE - C	https://classroom.google.com/c/NDYzODM1NzI2MTM3/a/NDczODM0NDc5OTAw/details
BACKLOG	https://classroom.google.com/c/NDA1Mzc1ODcwOTQw?cjc=qsochur