B.Tech/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/2nd Sem/MATH-1201/2016

B.Tech/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/2nd Sem/MATH-1201/2016

2016 MATHEMATICS II (MATH 1201)

Time Alloted : 3 Hours

Full Marks : 70

Figures out of the right margin indicate full marks. Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group. Candidates are required to give answer in their own words as far as practicable

<u>GROUP - A</u> (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following : [10×1=10]
 - i) The equation $(3x^2 + py)dx + (-6y^2 + qx)dy = 0$ is exact if
 - (a) p + q = 0(b) p - q = 0(c) 3p + q = 0(d) $p \neq q$

ii)
$$\frac{1}{(D-1)^2}e^x =$$

(a) e^x (b) xe^x

(c)
$$x^2 e^x$$
 (d) $\frac{x^2}{2} e^x$

1

 iii) A tree T has two vertces of degree 2, one vertex of degree 3 and three vertices of degree 4. The number of pendant vertices in T is

(a) 9 (b) 6 (c) 7 (d) 10

iv) The number of vertices in a simple graph with 21 edges whose 3 vertices are of degree 4 and remaining vertices are of degree 3 is

(a) 10 (b) 13 (c) 12 (d) 20

- v) A complete graph may not be
 - (a) regular(b) connected(c) simple(d) circuit

$$(a^{2}t) =$$

$$VI) L(e^{-x}) =$$

(a) $\frac{1}{s-2}$ (b) $\frac{1}{s+2}$ (c) $\frac{1}{s^2}$ (d) $\frac{1}{2s}$ vii) $B(\frac{1}{2}, \frac{1}{2}) =$

(a)
$$\sqrt{\pi}$$
 (b) π (c) 1 (d) $\frac{1}{2}$

viii) The general solution of $p^2 + p - 6 = 0$ is $\left[\text{where, } p = \frac{dy}{dx} \right]$ (a) (y + 3x - c)(y - 2x - c) = 0(b) (y + 4x - c)(y - 2x - c) = 0(c) (y + 3x)(y - 2x - c) = 0(d) none

MATH 1201

[Turn over]

MATH 1201

2

[Turn over]

B.Tech/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/2nd Sem/MATH-1201/2016

ix) Determine the value of k so that the lines $\frac{x-1}{2} = \frac{y-4}{1}$

$= \frac{z-5}{2}$	and	$\frac{x-2}{-1}$	=	$\frac{y-8}{k}$	=	$\frac{z-1}{4}$	1 - may	intersect
(a) 2				(k	c)	4		
(c) 3				(0	d)	5		

x) Angle between the planes x + y + z = 1, x - y = 2 is

(a) 0		(b)	π /	3
(C) π /	2	(d)	π /	4

GROUP - B

2. (a) Solve the following differential equation :

 $(x^2y - 2xy^2)dx + (3x^2y - x^3)dy = 0$

- (b) Obtain the differential equation of all circles each of which touches x-axis at the origin.
- (c) Find the integrating factor of the following differential equation :

$$\frac{\mathrm{dx}}{\mathrm{dy}} + \frac{\mathrm{x}}{\mathrm{y} \log \mathrm{y}} = \frac{2}{\mathrm{y}}$$
6+4+2 = 12

3. (a) Apply the method of variation of parameters to solve

$$\frac{d^2y}{dx^2} + a^2y = Sec ax$$

(b) Find the general solution of the following equation by D-operator method:

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 5\frac{\mathrm{d}y}{\mathrm{d}x} + 6y = x^2 \mathrm{e}^3$$

3

6+6 = 12 [Turn over] B.Tech/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/2nd Sem/MATH-1201/2016

GROUP - C

- 4. (a) Let G be a graph every vertex of which is of even degree. Prove that G has no cut edge.
 - (b) Determine whether the following graphs are isomorphic or not :

(c) Does there exist a graph corresponding to the following incidence matrix? Justify.

-	[1	0	1	0]	
	0	0	1	1	
	1	0	0	0	
	0	0	0	1	

6+4+2 = 12

5. (a) Find whether the following graphs are isomorphic or not. Give reasons for your answer.

MATH 1201

MATH 1201

4

[Turn over]

B.Tech/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/2nd Sem/MATH-1201/2016

- (b) Prove that every graph with fewer edges than vertices has a component that is a tree.
- (c) Find by Prim's Algorithm, a minimal spanning tree of the following graph and find its weight.

$$3+5+4 = 12$$

6. (a) Evaluate :

$$\int_{0}^{\infty} \frac{\mathrm{dx}}{(1+x)\sqrt{x}}$$

(b) Prove that
$$\int_{-1}^{1} \frac{dx}{x^3}$$
 exists in Cauchy principal value sense but not in general sense.

6+6 = 12

7. (a) Evaluate the following using convolution theorem :

$$L^{-1}\left\{\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right\}.$$

(b) Solve :
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 4e^{2t}$$
, $y(0) = -3, y'(0) = 5$

5

$$5+7 = 12$$

MATH 1201

B.Tech/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/2nd Sem/MATH-1201/2016

GROUP - E

 (a) A variable plane has intercepts on the co-ordinate axes, the sum of whose squares is a constant k². Show that the locus of the foot of the perpendicular from the origin

to the plane is
$$(x^2 + y^2 + z^2) \times \left(\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2}\right) = k^2$$

(b) Find the equation of the bisector of the angle between the planes x + 2y + 2z = 9, 4x - 3y + 12z + 13 = 0 that contains the origin.

6+6 = 12

9. (a) Find the magnitude and the equation of the line of shortest distance between the lines :

$$\frac{x-8}{3} = \frac{y+9}{-16} = \frac{z-10}{7}, \ \frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$$

(b) Show that the lines $\frac{x+4}{3} = \frac{y+6}{5} = \frac{z-1}{-2}$, 3x - 2y + z + 5= 0 = 2x + 3y + 4z - 4 are coplanar. Find the equation of the plane on which they lie.

6+6 = 12

6