PHYSICS - II (PHYS 2001)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Co

andidates are required to give answer in their own words as far as practicable.								
Group – A (Multiple Choice Type Questions)								
Choo	se the correct alterna	tive for the following	: 1	$0 \times 1 = 10$				
(i)	The degrees of freedom relation for a system of N particles with K constraints is							
	given by (a) N-K	(b) 3N-K	(c) N-3K	(d) 3K-N.				
(ii)	The value of $[L^2, L_Z]$ is (a) 1	(b) <i>iħ</i>	(c) − <i>iħ</i>	(d) 0.				
(iii)	The total wave function of a quantum particle (a) is always complex (b) is always real (c) can be real or complex (d) is a solution of the time independent Schrodinger equation.							
(iv)	The number of possible (a) 27	e arrangements of three f (b) 9	ermions in three ce	ells is (d) 1.				
(v)	The average velocity of the Fermi level is $(a) \frac{2}{3} v_f$	f an electron at T = 0K is $(b) \frac{1}{3} v_f$	n a metal in terms $ (c) \frac{3}{2} v_f $	of velocity v_f at $(\mathrm{d}) \tfrac{3}{4} v_f.$				
(vi)	At Fermi level, the prol(a) 0	bability of electron occu (b) 1	pation at $T > 0K$ is (c) $\frac{1}{2}$	(d) ¼.				
(vii)	In a linear, isotropic dielectric, the relationship between the polarization vector \vec{P} , the electric susceptibility χ , and the electric field \vec{E} is given by							
	(a) $\vec{P} = \chi \vec{E} / \varepsilon_0$	(b) $\vec{P} = \frac{\varepsilon_0 \vec{E}}{\chi}$	(c) $\vec{P} = \chi \varepsilon_0 \vec{E}$	(d) $\vec{P} = \chi \vec{E}$.				

PHYS 2001 1

1.

(viii)	The magnetic induction, \vec{B} , the magnetic field intensity \vec{H} , the magnetization \vec{M} , and
	the permeability of free space μ_0 are related as follows

(a)
$$\vec{B} = \mu_0 (\vec{H} + \vec{M})$$

(c) $\vec{B} = \mu_0 (\vec{H} - \vec{M})$

(b)
$$\vec{B} = \mu_0 \vec{H} + \vec{M}$$

(c)
$$\vec{B} = \mu_0 (\vec{H} - \vec{M})$$

(d)
$$\vec{B} = \mu_0 \vec{H} - \vec{M}$$

- (ix) In a p-type semiconductor, the donor level
 - (a) lies near the valence band edge
 - (b) lies near the conduction band edge
 - (c) lies halfway between the valence and conduction band edges
 - (d) does not exist.
- Which one of the following functions is an eigen function of the operator $\frac{d^2}{dx^2}$?

 (a) x (b) x^2 (c) e^{-x^2} (d) (x)

(a)
$$x$$

(b)
$$x^2$$

(c)
$$e^{-x}$$

(d) cosx.

Group-B

- What are generalized coordinates? Write down the Lagrangian and Lagrange's 2. (a) [(CO6) (Remember/LOCQ)] equation defining all the terms.
 - Consider a particle sliding down a frictionless inclined plane. Write down (b) Hamilton's equations for this system. [(CO6) (Apply/IOCQ)]
 - The kinetic and potential energies of a system are given respectively by (c) $T = \frac{1}{2}m\dot{x}^2$ and $V = \frac{1}{2}kx^2$ where m and k are constants. Construct the Lagrangian. Find the expressions for the generalized momentum and generalized force for this system. Derive the equation of motion of this system. [(CO6) (Apply/IOCQ)]
 - Consider a simple pendulum with a mass m and string length l. Obtain (d) Lagrange's equation of motion for this system. [(CO6) (Evaluate/HOCQ)]

$$(1+2)+2+(1+2+1)+3=12$$

What do you mean by normalization condition of a wave function? If a wave 3. (a) function of a quantum mechanical particle is given by

$$\psi(x,t) = A \sin\left(\frac{n\pi x}{L}\right) e^{-\frac{iEt}{\hbar}} \text{ for } 0 \le x \le L$$

$$= 0 \qquad \text{otherwise}$$

where, $n = 0, 1, 2, 3, \dots$ etc. Find the value of A from normalization condition. Also find the value of x corresponding to maximum probability of finding the particle for the above system. [(CO1)(Evaluate/HOCQ)]

- finding the particle for the above system. [(CO1)(Evaluate/HOCQ)] Find $[\hat{x}, \hat{L}_z]$, for a quantum mechanical system, where the terms have their usual (b) [(CO1)(Apply/IOCQ)] meaning.
- Why do you think that the operators in quantum mechanics must be Hermitian (c) [(CO1)(Understand/LOCQ)] in nature?
- Show that in case of a quantum system the eigen functions corresponding to two (d) different eigen values are orthogonal to each other. [(CO1) (Apply/IOCQ)]

(1+2+2)+2+2+3=12

Group - C

- 4. (a) Derive Planck's radiation law from Bose –Einstein statistics. State clearly the assumptions made in the theory. [(CO3)(Evaluate/HOCQ)]
 - (b) Using Fermi-Dirac statistics, calculate the concentration of holes in the valence band of an intrinsic semiconductor. [(CO3) (Evaluate/HOCQ)]
 - (c) The electron concentration of silver is 1.38×10^{-23} m⁻³. Find its Fermi energy. [(CO3) (Apply/IOCQ)]
 - (d) Express the Fermi energy value in a metal in terms of free electron density at T = 0K. [(CO3) (Create/HOCQ)]

(2+2)+3+2+3=12

- 5. (a) 3 particles each of which can be in any one of the non-degenerate energy levels having energy values ε , 2ε , 3ε , 4ε . Find all possible macrostates of the particles in the energy levels for which the total energy of the system is 6ε . And also find the number of microstates of any one of the macrostates if
 - (i) Particles are obeying B-E statistics.
 - (ii) Particles are obeying F-D statistics. [(CO3) (Apply/IOCQ)]
 - (b) For particles obeying M-B Statistics, write down the expression of thermodynamic probability of a macrostate $(N_1, N_2, N_3,....., N_i)$ having $g_1, g_2, g_3,....., g_i$ number of energy states corresponding to 1^{st} , 2^{nd} , 3^{rd} ,, i^{th} energy level respectively. From that expression, establish $N(E)dE = \frac{g(E)dE}{e^{\alpha + \beta E}}$, where the symbols have their usual meaning. [(CO3)(Evaluate/HOCQ)]
 - (c) Find out the expression of average speed $[v_{avg}]$ of ideal gas molecules. Given that $N(E)dE = \left[\frac{2\pi N}{(\pi KT)^{\frac{3}{2}}}\right]e^{-\frac{E}{KT}}E^{\frac{1}{2}}dE$, where symbols have their usual meaning.

[(CO3)(Evaluate/HOCQ)](2 + 1 + 1) + (1 + 4) + 3 = 12

Group - D

6. (a) State Curie's law of paramagnetism. Write down Weiss' hypotheses for a ferromagnetic material and derive the Curie-Weiss law.

[(CO5) (Remember/LOCQ)]

- (b) Define electric polarizability? What are the different kinds of polarizabilities that may appear in a dielectric material? [(CO5) (Remember/LOCQ)]
- (c) Write the differences among dia, para and ferro-magnetic materials on the basis of magnetic moment. [(CO5) (Remember/LOCQ)]
- (d) What do you mean by hysteresis loss of magnetic material?

[(CO5) (Understand/LOCQ)] (1 + 1 + 3) + 2 + 3 + 2 = 12

- 7. (a) What is dielectric susceptibility? How is it related to the dielectric constant of dielectric material? [(CO5) (Understand/LOCQ)]
 - (b) Establish the relation concerning D, E and P. (Symbols have their usual meaning.) [(CO5) (Evaluate/HOCQ)]

PHYS 2001 3

(c) The magnetic field intensity in a ferrite oxide is 10^6 A/m. If the susceptibility of the material at room temperature is 1.5×10^{-3} , compute the magnetization of the material and the magnetic field induction. ($\mu_0 = 4 \pi \times 10^{-7} \text{ N/A}^2$).

[(CO5)(Apply/IOCQ)]

(d) Draw the hysteresis loops of a soft and a hard magnetic material in the same plot. [(CO5) (Apply/IOCQ)]

(1+2)+3+(2+2)+2=12

Group - E

- 8. (a) The energy wave vector dispersion relation for a one-dimensional crystal of lattice constant a is given by $E(k) = E_0 2ak^2$ where E_0 is a constant. Find the expression of the effective mass of an electron in this crystal as a function of k. [(CO2) (Create/HOCQ)]
 - (b) What is the Meissner effect? Show that a superconducting material behaves as a perfect diamagnetic material below its transition temperature.

[(CO5) (Remember/LOCQ)]

(c) State and explain Bloch's theorem in one dimension.

[(CO2) (Understand/LOCQ)]

(d) What is the critical magnetic field for a superconductor?

[(CO5)(Understand/LOCQ)]

2 + (2 + 2) + (2 + 2) + 2 = 12

- 9. (a) Distinguish between type I and type II superconductors. Name some materials belonging to these two types of superconductors. [(CO5) (Analyze/IOCQ)]
 - (b) Lead (Pb) gets transition to its superconducting state at 7.20 Kelvin. Lead has critical magnetic field at 0K is 65100 A/m, calculate its critical magnetic field at -271° C. [(CO5) (Apply/IOCQ)]
 - (c) An electron is moving in one dimension periodic lattice with lattice constant 'a' with potential V(x) = V(x + a). If 'H' be the Hamiltonian of the electron and $\widehat{T_a}$ be the lattice translational operator, then
 - (i) Show that H is periodic function of x with periodicity 'a'.
 - (ii) Show that, if $\psi(x)$ is an eigen function of H with eigen vale E then " $\widehat{T_a}\psi(x)$ " is also an eigen function of H with the same eigen value.

[(CO2) (Apply/IOCQ)]

(d) Qualitatively explain the formation of energy bands in crystals.

[(CO2)(Understand/HOCQ)]

(2+1)+2+(2+2)+3=12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	31%	33%	36%

Course Outcome (CO):

After the completion of the course students will be able to:

PHYS 2001 4

- 1. Understand and apply Vector Calculus as tool for solving different physical problems.
- 2. Analyze the nature of central forces and rotating frame phenomenon to understand basic space science and real world applications understand basic space science and real world applications.
- 3. Interpret the different types of oscillatory motion and resonance.
- 4. Apply fundamental theories and technical aspect in the field of electricity and magnetism in solving real world problems in that domain magnetism in solving real world problems in that domain.
- 5. Understand the Electrical and Magnetic properties of different types of materials for scientific and technological use materials for scientific and technological use.
- 6. Develop Analytical & Logical skill in handling problems in technology related domain.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question

Department & Section	Submission Link
	CLASS ROOM LINK:https://classroom.google.com/c/NDc1MDgwMzg3MjI0?cjc=vxq2ael
BACKLOG	SUBMISSION LINK:
	https://classroom.google.com/c/NDc1MDgwMzg3MjI0/a/NDc1MDgwNDA4NTU5/details

PHYS 2001 5