B.TECH/AEIE/CE/ECE/EE/3RD SEM/MATH 2001(BACKLOG)/2021

MATHEMATICAL METHODS (MATH 2001)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A (Multiple Choice Type Questions)

		(Multip	ole Choice Type Qu	estions)	
1.	Choose the correct alternative for the following:				10 × 1 = 10
	(i)	The value of the integral (a) 0	ral $\oint_C \frac{z^2-z+1}{z-2} dz$ where (b) $2\pi i$	$C: z = 1is$ $(c) -2\pi i$	(d) 1.
	(ii)	The function $f(z) = \frac{1}{z}i$ (a) at $z = 0$ (c) at all points	s analytic	(b) at z = 1 (d) Nowhere.	
	(iii)	The period of $\cos 2\pi x$ (a) 2π	is (b) 1	(c) 2	(d) 3.
	(iv)	If $f(x) = x \sin x$, $-\pi \le x \le \pi$, be presented in Fourier series as $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos nx + b_n \sin nx]$			
		Then the value of a_0 w (a) 2	vill be (b) 4	(c) 0	(d) 1.
	(v)	The value of $P_0(x)$ is (a) -1	(b) 1	(c) 0	(d) x.
	(vi)	The value of $J_0(0)$ is $(a)^{\frac{1}{2}}$	(b) -1	(c) 1	(d) 0.
	(vii)	$J_{\frac{1}{2}}(x) =$			
		(a) $\sqrt{\frac{2\pi}{x}}\cos x$ (c) $\sqrt{\frac{2}{\pi x}}\cos x$		(b) $\sqrt{\frac{2\pi}{x}} \sin x$ (d) $\sqrt{\frac{2}{\pi x}} \sin x$.	
		$(c)\sqrt{\frac{2}{\pi x}}\cos x$		(d) $\sqrt{\frac{2}{\pi x}} \sin x$.	

B.TECH/AEIE/CE/ECE/EE/3RD SEM/MATH 2001(BACKLOG)/2021

- The function $f(z) = \overline{z}$ is (viii)
 - (a) continuous at z = 0

(b) differentiable at z = 0

(c) analytic

- (d) not continuous at z = 0.
- The order and the degree of the partial differential equation (ix)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = x^2 + y^2$$
 is

(a) 2, 2

(c) 2, 1

- (d) 1,1.
- The value of the integral $\oint_C \frac{dz}{z-1}$ where C is the circle |z|=2 is (x)
 - (a) 0

(b) -1

(c) πi

(d) $2\pi i$.

Group-B

- State Cauchy's Integral formula. Use it to evaluate the integral $\oint_C \frac{z}{(z^2-1)} dz$ 2. (a) where *C* is the circle |z| = 2.
 - Prove that $u = x^3 3xy^2 + 3x^2 3y^2 + 1$ is a harmonic function and (b) determine the corresponding analytic function u + iv.
 - 6 + 6 = 12
- Show that the function $f(z) = \begin{cases} \frac{2xy^2}{x^3 + 4y^3}, & z \neq 0 \\ 0, & z = 0 \end{cases}$ is not continuous at z = 0. (a) 3.
 - (b) Determine the poles and residues at each of the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)^2}$

6 + 6 = 12

Group - C

- (a) 4.
- Find the Fourier series expansion of the function $f(x) = \frac{\pi x}{2}$ in $0 \le x \le 2\pi$. Find the Fourier sine transform of the function $f(x) = \begin{cases} x, & 0 < x < a \\ 0, & x > a \end{cases}$. (b)

- 5. Find the half-range Fourier (i) sine series and (ii) cosine series of the function (a) f(x) = x in the interval 0 < x < 2.
 - Find the Fourier transform of the function $f(x) = \begin{cases} 1, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$ (b)

6 + 6 = 12

Group - D

- Solve in series the equation y'' + xy = 0 about the point x = 0. 6. (a)
 - Show that $P_n(-1) = (-1)^n$. (b)

8 + 4 = 12

B.TECH/AEIE/CE/ECE/EE/3RD SEM/MATH 2001(BACKLOG)/2021

- 7. (a) Show that $\frac{d}{dx}[x^nJ_n(x)] = x^nJ_{n-1}(x)$. Hence show that $xJ_n'(x) = -nJ_n(x) + xJ_{n-1}(x)$.
 - (b) Show that $\int_{-1}^{1} P_m(x) P_n(x) = 0$ when $\neq n$.

6 + 6 = 12

Group - E

- 8. (a) Form the partial differential equation from the relation $2z = (ax + y)^2 + b$, where a and b are arbitrary constants.
 - (b) Use Charpit's method to solve the partial differential equation px + qy = pq. 5 + 7 = 12
- 9. (a) Solve the partial differential equation: (mz ny)p + (nx lz)q = ly mx.
 - (b) Use method of separation of variable to solve the partial differential equation $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$, subject to the condition $u(x, 0) = 6e^{-3x}$.

6 + 6 = 12

Students having backlog in MATH2001 (old syllabus) are advised to follow the steps as mentioned below in order to submit the answer-scripts properly:

Step-I: Join the Google classroom by clicking the following link (note that you have to join using your institutional email account):

https://classroom.google.com/c/NDY0NTA4MTU3MjY4?cjc=yslwkq2

Step-II: Submit your answer script by clicking link below:

https://classroom.google.com/c/NDY0NTA4MTU3MjY4/a/NDc0ODUxNTczMDcz/details