ANALOG & DIGITAL ELECTRONICS (ELEC 2102)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choos	$10 \times 1 = 10$				
	(i)	If a square wave is applied at the input of (a) impulse waveform (c) triangular waveform		a differentiator, the output is (b) square waveform (d) sinusoidal waveform		
	(ii)	The output impedance of an operational a (a) as low as possible (c) as high as possible		amplifier should be (b) unity (d) infinite	2	
	(iii)	If the differential a differential amp (a) 0.1	gain = 1000 and CMRR blifier is (b) 10 ⁸	= 80dB, then the c (c) 0.08	ommon mode gain of (d) 12.5	
	(iv)	 A Schmitt trigger circuit generates (a) triangular waveform (c) square waveform 		(b) sinusoidal waveform (d) sawtooth waveform		
	(v)	The other name of voltage follower is (a) Inverting amplifier (c) Non-inverting amplifier		(b) Differential amplifier (d) Unity gain amplifier		
	(vi)	Which of the follo (a) 2421	owing is a weighted code (b) Excess-3	e? (c) Gray	(d) All of the above	
	(vii)	Which of the following is not a valid rule in Boolean algebra(a) $A+1=1$ (b) $A+0=0$ (c) $A \cdot A = A$ (d) $A \cdot 0 = 0$				
	 (viii) A 4-bit parallel adder can add (a) two 4-bit binary number (c) four bits at a time 			(b) two 2-bit binary number (d) four bits in sequence		

- (ix) The minimum number of NAND gates required to construct an XOR gate is (a) 3 (b) 4 (c) 5 (d) 8.
- (x) A feature that distinguishes the J-K flip-flop from the S-R flip flop is the
 (a) toggle condition
 (b) preset input
 (c) type of clock
 (d) clear input

Group-B

- 2. (a) Draw and explain the transfer characteristics of an inverting amplifier using an operational amplifier. [(CO1)(Remember/LOCQ)]
 - (b) The transistor circuit shown in Fig. 1 uses a silicon transistor with VBE = 0.7V, IC ≈ IE and a dc current gain of 100. Determine the value of Vo. [(CO1) (Analyze/LOCQ)]

Fig. 1

(c) Design a circuit using one operational amplifier to obtain an output voltage Vout
 = V1 - 3V2 where V1and V2 are the input voltages. [(CO1)(Create/HOCQ)]

3 + 5 + 4 = 12

- 3. (a) Explain the working principle of a precision rectifier using an operational amplifier with the help of a neat circuit diagram and waveforms. [(CO2) (Remember/LOCQ)]
 - (b) Model the linear differential equation using minimum number of operational amplifier: $2\frac{d^2y}{dt^2} + \frac{dy}{dt} + y = 1$. [(CO2) (Apply/IOCQ)]
 - (c) Determine the upper threshold voltage, lower threshold voltage and hysteresis voltage for the Schmitt trigger circuit shown in Fig. 2. Assume $R_1 = R_2 = 10k\Omega$, $V_{in}(p-p) = 20V$ sine wave, $V_{sat} = \pm 12V$ and $V_R = 5V$. [(CO2) (Evaluate/HOCQ)]

Group - C

- 4. (a) Compare Hartley and Colpitts oscillator. [(CO3) (Remember/LOCQ)]
 - (b) Derive the expression of oscillation frequency for the Wien bridge oscillator using an operational amplifier. [(CO3) (Apply/IOCQ)]
 - (c) Justify the following statement : "RC phase shift oscillator using an operational amplifier cannot be realised with only two stages in the feedback circuit."
 [(CO3) (Evaluate/HOCQ)]

2 + 6 + 4 = 12

- 5. (a) What is the nature of the trigger pulse applied in the circuit of a monostable multivibrator using an operational amplifier? [(CO3) (Understanding/LOCQ)]
 - (b) Construct an astable multivibrator using a 555 timer having a duty cycle equal to 50%. [(CO3) (Apply/IOCQ)]
 - (c) Design a triangular wave generator with frequency of oscillation = 2kHz and amplitude of the triangular wave Vo(p-p) = 7V. [(CO3) (Evaluate/HOCQ)]

2 + 6 + 4 = 12

Group – D

- 6. (a) Define D Morgan's Theorem of boolean algebra. [(CO4) (Remember/LOCQ)]
 - (b) Apply the knowledge of K map to simplify the following Boolean function and implement it using suitable logic gates:

 $F(A,B,C,D) = \sum_{m} (0,1,2,8,10,11,14,15) + \sum_{d} (3,13). [(CO4) (Apply/IOCQ)]$

- (c) Realize EX-OR and EX-NOR gates using NAND gates only. [(CO4)(Create/HOCQ)] 3 + 5 + 4 = 12
- 7. (a) Discuss briefly about 2 lint to 4 line decoder. [(CO5) (Understand /LOCQ)]
 - (b) Sketch and explain the functional diagram and write down the truth table of a 1:4 demultiplexer. [(CO5) (Apply/IOCQ)]
 - (c) Design a single bit comparator, which can compare A=B, A>B and A<B. [(CO5)(Create/IOCQ)]

4 + 5 + 3 = 12

Group - E

- 8. (a) State the difference between asynchronous and synchronous counter. [(CO6) (Remember/LOCQ)]
 - (b) Demonstrate how a JK flip flop can be used as a frequency divider circuit. [(CO6) (Apply/IOCQ)]
 - (c) Design a SR flip flop using JK flip flop. [(CO6)(Create/HOCQ)]

4 + 5 + 3 = 12

9. (a) Explain the working of a 4 bit asynchronous up counter with necessary diagrams. [(CO6) (Remember/LOCQ)]

ELEC 2102

(b) Design a 4 bit SISO shift register and explain its working principle. [(CO6)(Create/HOCQ)]

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	28.13%	44.8%	27.08%

Course Outcome (CO):

After the completion of the course students will be able to

- Recall basic principles of diodes, transistors and OPAMPs.
- Understand basic principles of OPAMP based circuits for linear and nonlinear operations and analyze their implications.
- Acquire knowledge about different waveform generators, 555 timers, ADCs and DACs and their applications.
- Recall number systems and Boolean algebra.
- Understand Boolean algebra based realisation of logic gates and design of various arithmetic and combinational circuits.
- Design and analyze various sequential circuits like synchronous and asynchronous counters, shift registers using flip flops.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question

Department & Section	Submission Link		
	Joining Code: sywhhq3		
EE	Submission Link:		
	https://classroom.google.com/c/NDA2NDE0NzI2MzEw/a/NDY0ODg0NTQwMzU5/details		