MATHEMATICS - I (MATH 1101)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:					$10 \times 1 = 10$
	(i)	The following system of equations $2x_1 - x_2 + 3x_3 = 1$ $3x_1 - 2x_2 + 5x_3 = 2$ $-x_1 + 4x_2 + x_3 = 3$ has (a) no solution. (b) a unique solution. (c) more than one but a finite number of solutions. (d) an infinite number of solutions.				
	(ii)	If $A = \begin{bmatrix} 8 \\ 7 \end{bmatrix}$ (a) 0.	$\left[\frac{5}{5}\right]$, then the value (b) 1	of $ A^{121} - A^{120} $	⁰ is (c) 121.	(d) 120.
	 (iii) A matrix A has dimension 2 × 2. If the eigen values of what would be the eigen values of A². (a) 1 and 2. (b) 1 and 16. (c) 0.5 and 					e matrix are 1 and 4, (d) 2 and 4.
	(iv)	A vector fie (a) Solenoid (c) Hemispl	ld which has a var lal field. neroidal field.	ishing diverg	vergence is called as (b) Rotational field. (d) Irrotational field.	
	(v)	The series $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$ is convergent for (a) all real value of x. (b) $ x < 1$. (c) $ x \le 1$. (d) $-1 < x \le 1$.				
	(vi)	If $\sum_{n=1}^{\infty} \frac{1}{n^4} =$ (a) $\frac{\pi^4}{45}$.	$\frac{\pi^4}{90}$, then the value (b) $\frac{8\pi^4}{45}$.	of the series $\int (c) \frac{8\pi^4}{45}$	$\sum_{n=1}^{\infty} \left(\frac{2}{n}\right)^4$ is -1 .	(d) $16\left(\frac{\pi^4}{90}-1\right)$.

MATH 1101

B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1ST SEM/MATH 1101(BACKLOG)/2021

- (vii) Which of the following is not a necessary condition for Cauchy's Mean Value Theorem?
 - (a) The functions, f(x) and g(x) be continuous in [a, b]
 - (b) There exists a value $c \in (a, b)$ such that g'(c) = 0
 - (c) The functions f(x) and g(x) be derivable in (a, b)
 - (d) There exists a value $c \in (a, b)$ such that, $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$.
- (viii) Which of the following is a Maclaurin's series? (a) $\sum_{n=0}^{\infty} (x-2)^n$ (b) $\sum_{n=0}^{\infty} (x-1)^n$ (c) $\sum_{n=0}^{\infty} x^n$ (d) $\sum_{n=0}^{\infty} (x+1)^n$

(ix) If z is homogenous function of degree 2 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to (a) z. (b) z^2 . (c) 2z. (d) 2.

(x) The volume of a region is obtained by evaluating
(a) line integral.
(b) double integral.
(c) triple integral.
(d) None of these.

Group – B

2. (a) Find the rank of the following matrix using echelon form. $\begin{bmatrix} 2 & 1 & 3 & 5 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & 1 \end{bmatrix}$ (b) Show that x + 2y - z = 3, 3x - y + 2z = 1, 2x - 2y + 3z = 2, and x - y + z = -1 are consistent and solve them.

6 + 6 = 12

3. (a) Express the given matrix *A* as a sum of a symmetric and skew symmetric matrices. where $A = \begin{bmatrix} 2 & -4 & 9 \\ 14 & 7 & 13 \\ 9 & 5 & 11 \end{bmatrix}$. (b) Show that the matrix $A = \begin{bmatrix} 1 & -2 & 1 \\ 1 & -2 & 1 \\ 1 & -2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$ satisfies its characteristic equation and hence find A^{-1} .

6 + 6 = 12

Group – C

- 4. (a) Show that there is no real number *A* for which the equation $x^3 27x + A = 0$ has two distinct roots in [0,2].
 - (b) Assuming the validity of expansion, find the series expansion of $f(x) = e^{2x}$ for all real values of x.

6 + 6 = 12

5. (a) Check the convergence of the following series

MATH 1101

B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1ST SEM/MATH 1101(BACKLOG)/2021

(i)
$$\sum \frac{n^3}{1+2^n}$$
 (ii) $\sum \left(\frac{n+1}{2n-1}\right)^n$

(b) Test the absolute and conditional convergence of the series $\sum \left(\frac{(-1)^{n+1}}{2n+1}\right)$. **6 + 6 = 12**

Group – D

6. (a) Find the *n*th derivative of $x^2 \log x$.

(b) Locate the critical points of the function $f(x, y) = x^2y^2 - x^2 - y^2$ and classify them as relative minimum, relative maximum and saddle points.

6 + 6 = 12

7. (a) Discus the limit of the following functions at the point (0,0).
(i)
$$f(x,y) = \frac{xy}{x^2+y^2}$$
 for $(x,y) \neq (0,0)$.
(ii) $f(x,y) = \frac{(y-x)(1+x)}{(y+x)(1+y)}$, for $x + y \neq 0, -1 < x, y < 1$.
(b) If $u = \tan^{-1} \frac{x^3+y^3}{x-y}$ then prove that $x \frac{du}{dx} + y \frac{du}{dy} = \sin 2u$.
 $6 + 6 = 12$

Group – E

8. (a) Evaluate
$$\int_0^1 \int_0^{\sqrt{1+x^2}} \frac{1}{1+x^2+y^2} dy dx$$
.

(b) Find the directional derivative of $\phi = 4xz^3 - 3x^2y^2$ at (2, -1, 2) in the direction of $2\hat{i} - 3\hat{j} + 6\hat{k}$.

6 + 6 = 12

9. (a) If \$\vec{a} = xy\hlowline - 2xz\hlowline + 2yz\hlowkine,\$ then show that \$Curl(Curl \$\vec{a}\$) = 3 \$\hloeshine\$.
(b) Using Green's formula, evaluate the line integral

 $\oint_C (x - y)dx + (x + y)dy,$ Where *C* is the circle $x^2 + y^2 = a^2$.

6 + 6 = 12

Students having backlog in MATH1101 (old syllabus) are advised to follow the steps as mentioned below in order to submit the answer-scripts properly:

Step-I: Join the Google classroom by clicking the following link (note that you have to join using your institutional email account): https://classroom.google.com/c/NDY0NTA10Tk5NDY3?cjc=ww7zqm2

Step-II: Submit your answer script by clicking link below: https://classroom.google.com/c/NDY0NTA1OTk5NDY3/a/MjI3ODkwMTQ5MjEw/details