B.TECH/CSE/ECE/7TH SEM/MATH 4121/2021 METHODS IN OPTIMIZATION (MATH 4121)

Time Allotted : 3 hrs

Full Marks: 70

 $10 \times 1 = 10$

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following:
 - (i) The value of λ for which the following pay-off matrix is strictly determinable is

	PLAYER B			
DI AVED A	λ	7	3	
PLAYER A	-2	λ	-8	
	-3	4	λ	

(a) $\lambda \le -2$ (c) for any value of λ (b) $-2 \le \lambda \le 3$ (d) $\lambda \ge 7$.

(ii) The quadratic form $Q(x, y, z) = x^2 + y^2 + z^2 + 3yz$ is (a) positive definite (b) positive semi definite (c) negative definite (d) indefinite.

(iii) For the standard minimization problem, the Kuhn-Tucker necessary conditions are also sufficient conditions, provided

- (a) objective function is convex and constraints are concave
- (b) objective function and constraints are concave
- (c) objective function and constraints are convex
- (d) objective function is concave and constraints are convex.
- (iv) The optimal solution of the following game problem is

	PLAYER B			
		B ₁	B ₂	B ₃
PLAYER A	A_1	15	2	3
	A ₂	6	5	7
	A_3	-7	4	0

(a) (A_3, B_2)

(c) (A₁,B₁)

(d) (A_3, B_3) .

1

(b) (A_2, B_2)

B.TECH/CSE/ECE/7TH SEM/MATH 4121/2021

(v) The bordered Hessian matrix of the Lagrange function *L* constructed for an optimization problem with equality constraints is given by

$$H^{B}(L) = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 3 \\ 1 & 2 & 2 & 0 \\ 1 & 3 & 0 & 2 \end{pmatrix}$$

then the number of equality constraints involved in the problem is,
(a) 1 (b) 2 (c) 3 (d) 0.
A game is said to be fair game if the maximin and minimax values of the game
are:

(a) equal	(b) both equal to one
(c) both equal to zero	(d) not equal.

(vii) The solution
$$x_1 = 1, x_2 = 2$$
 and $x_3 = 3$ of the system
 $2x_1 + 2x_2 + 8x_3 = 30$
 $x_1 + 4x_3 = 13$
 $x_1 + 2x_2 + 4x_3 = 17$

is

(vi)

(a) a basic solution

(c) a degenerate basic feasible solution

(b) a non-basic solution(d) a non-feasible basic solution.

- (viii) If a constant be added to any row or any column of the cost matrix of an assignment problem, then
 - (a) the resulting assignment problem has the same optimal solution as the original problem
 - (b) the resulting assignment problem has a different optimal solution from the original problem
 - (c) the resulting assignment problem will not give an optimal solution
 - (d) the optimal solution of the resulting assignment problem can be obtained by adding same constant to the optimal solution of the original problem.
- (ix) In an $m \times n$ transportation problem, a basic feasible solution will contain
 - (a) at most m + n 1 positive variables
 - (b) at most *mn* positive variables
 - (c) at most mn 1 positive variables
 - (d) at most mn (m + n 1) positive variables.
- (x) In Golden section search algorithm, if the initial interval of uncertainty is L_0 , then the length of the final interval L_i is,

(a)
$$L_j = \frac{1}{\gamma^{j+2}} L_0$$

(b) $L_j = \frac{1}{\gamma^j} L_0$
(c) $L_j = \frac{1}{\gamma^{j+1}} L_0$
(d) $L_j = \frac{1}{\gamma^{j-1}} L_0$

(where γ is the golden ratio)

Group – B

- 2. (a) A diet for a sick person must contain at least 4000 units of vitamins, 50 units of minerals and 1400 calories. Two foods *A* and *B* are available at a cost of Rs.4
- MATH 4121

B.TECH/CSE/ECE/7TH SEM/MATH 4121/2021

and Rs. 3 per unit respectively. One of A contains 200 units of vitamins, 1 unit of mineral and 40 calories and one unit of food *B* contains 100 units of vitamins, 2 units of minerals and 40 calories. Formulate this problem as an LPP model and solve it by graphical method to find combination of foods to be used to have [(CO1, CO2) (Create/HOCQ)] least cost?

Solve the following LPP by Simplex method: (b) Maximize $z = 3x_1 + 2x_2$ subject to the constraints

$$\begin{array}{l}
x_1 - x_2 \leq 5 \\
2x_1 - 3x_2 \leq 30 \\
x_1, x_2 \geq 0.
\end{array}$$

[(CO1, CO2) (Apply/IOCQ)] 7 + 5 = 12

3. Solve the following LPP by Big-M method: (a) Maximize $z = 3x_1 + 2x_2 + 3x_3$ subject to the constraints x 1 x / 2

$$2x_1 + x_2 + x_3 \le 2$$

$$3x_1 + 4x_2 + 2x_3 \ge 8$$

$$x_1, x_2, x_3 \ge 0.$$

Obtain the dual LP problem of the following primal LP problem (b) Minimize $z = x_1 + 2x_2$ subject to the constraints

$$2x_{1} + 4x_{2} \le 160$$

$$x_{1} - x_{2} = 30$$

$$x_{1} \ge 10$$

$$x_{1}, x_{2} \ge 0$$

[(CO1, CO2) (Understand/LOCQ)] 7 + 5 = 12

Group - C

(a) Find the optimal solution of the following transportation problem: 4.

	D_1	D ₂	D_3	D ₄	Supply
01	1	2	1	4	30
02	3	3	2	1	50
03	4	2	5	9	20
Demand	20	40	30	10	

[(CO1, CO2, CO3, CO4)(Evaluate/HOCQ)]

(b) Solve the following assignment problem:

	Ι	II	III	IV
A	10	12	19	11
В	5	10	7	8
С	12	14	13	11
D	8	15	11	9

^{[(}CO1, CO2, CO3, CO4)(Evaluate/HOCQ)] 7 + 5 = 12

B.TECH/CSE/ECE/7TH SEM/MATH 4121/2021

5. (a) Use algebraic method to solve the following game:

	PLAYER B		
DI AVED A	9	1	4
PLAYERA	0	6	3
	5	2	8

[(CO1, CO2, CO3, CO4) (Apply/IOCQ)]

(b) Use graphical method in solving the following game and find the value of the game:

		PLAY	'ER B	
PLAYER A	-6	-1	4	3
	7	-2	-5	7

[(CO1, CO2, CO3, CO4)(Understand/LOCQ)] 7 + 5 = 12

Group – D

6. (a) Solve the following non-linear programming problem by the method of Lagrange multiplier:

Minimize $z = x_1^2 + (x_2 + 1)^2 + (x_3 - 1)^2$ subject to the constraint

$$x_1 + 5x_2 - 3x_3 = 6$$

x_1 x_2 x_2 > 0

(b) Consider the function $f(x_1, x_2, x_3) \ge 0$. [(CO6)(Evaluate/HOCQ)] Find the local optima point, if any, of the function. Determine also whether the local optima are global or not. [(CO6) (Understand/LOCQ)]

8 + 4 = 12

7. Use Kuhn-Tucker conditions to solve the following non-linear programming problem: Maximize $z = 7x_1^2 + 6x_1 + 5x_2^2$ subject to the constraints

$$\begin{aligned}
 x_1 + 2x_2 &\le 10 \\
 x_1 - 3x_2 &\le 9 \\
 x_1, x_2 &\ge 0
 \end{aligned}$$

[(CO6)(Evaluate/HOCQ)] 12

Group – E

- 8. Use Fibonacci Search method to minimize $f(x) = x^4 14x^3 + 60x^2 70x$ over [0, 2] taking the tolerance limit 0.3 (consider $\varepsilon = 0.001$). [(C01, C05)(Apply/IOCQ)] 12
- 9. Find the value of x in the interval [0,1] which minimizes the function $f(x) = x^2(x-2.5)$ to within ± 0.05 of the exact value using Dichotomous search algorithm taking $\varepsilon = 0.001$.

[(CO1, CO5)(Apply/IOCQ)]

MATH 4121

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	14.58%	44.79%	40.62%

Course Outcome (CO):

After the completion of the course students will be able to

- MATH4121.1 Describe the way of writing mathematical model for real-world optimization problems.
- MATH4121.2 Identify Linear Programming Problems and their solution techniques.
- MATH4121.3 Categorize Transportation and Assignment problems.
- MATH4121.4 Apply the way in which Game Theoretic Models can be useful to a variety of real-world scenarios in economics and in other areas.
- MATH4121.5 Apply various optimization methods for solving realistic engineering problems and compare their accuracy and efficiency.
- MATH4121.6 Convert practical situations into non-linear programming problems and solve unconstrained and constrained programming problems using analytical techniques.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question

Department & Section	Submission link:
CSE	https://classroom.google.com/c/NDA0Nzc4NzE5MTc0/a/NDY0MzEwMTU2MzUx/details
ECE	https://classroom.google.com/c/NDA0Nzc4NzE5MTk1/a/NDY0MzEwMTU3MTAz/details