B.TECH/ECE/7TH SEM/ECEN 4102(BACKLOG)/2021 CODING & INFORMATION THEORY (ECEN 4102)

Time Allotted : 3 hrs

Full Marks: 70

 $10 \times 1 = 10$

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

(i)			ny non-zero code wor	een any two code words d (d) none of the above.	
(ii)	For a (7,4) cycli pattern e(x)=x ⁴ (a) 101	-	by g(x)= x ³ +x+1. The (c) 110	syndrome for the error (d) 011	
(iii)	The generator p	olynomial of a cycli	c code is a factor of		
	(a) x ⁿ +1	(b) $x^{n-1}+1$	(c) $x^{n+1}+1$	(d) $x^{n+2} + 1$	
(iv)	If m = 3, then ler (a) 6	ngth (n) of the BCH (b) 5	code (c) 7	(d) none of these.	
(v)	The properties o (a) Linear	of cyclic code is /are (b) Cyclic	e (c) both (a) & (b)	(d) none of these.	
(vi)	An encoder for a (a) 4	a (4,3,5) convolution (b) 2	n code has input orde (c) 3	r of (d) 5	
(vii)	Code word length is (a) number of bits (c) number of parity bits		(b) distance between bits (d) none of the above.		
(viii)	The generator polynomial of a (7,4) cyclic code has a degree of (a) 2 (b) 3 (c) 4 (d) 5.				
(ix)	Purpose of the source coding is to (a) Increase the information transmission rate (b) Decrease the information transmission rate				

B.TECH/ECE/7TH SEM/ECEN 4102(BACKLOG)/2021

- (c) Decrease the S/N ratio.
- (d) Decrease the probability of error.
- (x) What is the Hamming distance between 11011 & 11001? (a) 2 (b) 3 (c) 1 (d) 5.

Group – B

- 2. (a) Define entropy, channel capacity. [CO1, (Remember/LOCQ)]
 - (b) Show that H(X, Y) = H(X/Y) + H(Y). Where symbols have their usual meanings. [CO1, (Analyse/IOCQ)]
 - (c) An analog signal band limited to 10 kHz is quantized in 8 levels of a PCM system with probabilities 1/4, 1/5, 1/5, 1/10, 1/10, 1/20, 1/20, 1/20 respectively. Calculate entropy and the rate of information. [CO1, (Apply/IOCQ)]

(2+2)+3+(3+1)=12

- 3. (a) A DMS X has five symbols with probabilities of occurrence $P(x_1) = 0.4$; $P(x_2) = 0.18$; $P(x_3) = 0.17$; $P(x_4) = 0.15$; $P(x_5) = 0.1$; Construct the Shannon-Fano coding and determine a> Average code length b> Code efficiency. [CO1, (Create/HOCQ)]
 - (b) A channel has the following channel matrix: $\begin{bmatrix} P(Y | X) \end{bmatrix} = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix}$

a> Draw the channel diagram. b> Find P(y₁) and P(y₂) when P(x₁) = P(x₂)=0.5 c> Find the joint probabilities P(x₁,y₂) and P(x₂,y₁) when P(x₁) = P(x₂) = 0.5 [CO1, (Apply/IOCQ)]

$$(3 + 1 + 3) + (1 + 2 + 2) = 12$$

Group – C

- 4. (a) Write down the properties of Linear Block Code. [CO2, (Remember/LOCQ)]
 - (b) The parity check bits of a (7,4) block code are generated by
 - $C_5 = d_1 \oplus d_2 \oplus d_3; C_6 = d_1 \oplus d_2; C_7 = d_1 \oplus d_3 \oplus d_4;$
 - a> Construct the corresponding Generator Matrix.
 - b> Find the systematic code corresponds to the information bits [1110] & [1010].
 - c> If the received words are v₁ = [1011001] & v₂ = [1111011]. Find the correct code words. [CO3, CO4, (Create/HOCQ)]

3 + (3 + 3 + 3) = 12

- 5. (a) For a linear block code derive that $C.H^T = 0$, where symbols have their usual meaning. [CO2, (Analyse/IOCQ)]
 - (b) What is an equivalent code? [CO2, (Remember/LOCQ)]
 - (c) Define minimum distance of a code-set. Minimum distance of a code is 7, determine the error-detection & error-correction capability of the code. [CO2, (Apply/IOCQ)]

B.TECH/ECE/7TH SEM/ECEN 4102(BACKLOG)/2021

(d) Parity check matrix of a linear block code is

0 1 : 1 0 0 0 1 1 0 1 0 H =: 0 1 1 0 0 1

- a> Determine the generator matrix.
- b> Assuming that a vector [110111] is received, find the correct data.[CO3, CO4, (Evaluate/HOCQ)]

3 + 2 + (1 + 1 + 1) + (2 + 2) = 12

Group – D

- 6. (a) For a systematic (7, 3) cyclic code determine the generator matrix and parity check matrix if $g(x) = x^4+x^3+x^2+1$ [CO3, CO4, (Create/HOCQ)]
 - (b) Determine systematic & nonsystematic code words for i = (1101) for the (7,4) code with $g(x) = x^3+x+1$ [CO3, CO4, (Evaluate/HOCQ)]

6 + 6 = 12

- 7. (a) For a (2, 1, 2) convolution code, $g^0 = (101) \& g^1 = (110)$. Draw the encoder. Find the state diagram, for this convolution code. [CO5, (Create/HOCQ)]
 - (b) What is constraint length in convolution code? Compute the same for the above mentioned code. [CO5, (Apply/IOCQ)]

(3+7) + (1+1) = 12

Group – E

- 8. (a) Determine the Galois Field elements of GF (2⁴) for the corresponding polynomial $p(x) = x^4+x+1$ [CO5, (Apply/IOCQ)]
 - (b) What do you mean by primitive element? α^3 , α^{10} are field elements of GF(2⁴), determine their order and check whether or not they are primitive elements. [CO5, (Apply/IOCQ)]
 - (c) Find the minimal polynomial of α^4 in GF (2⁴). [CO5, (Apply/IOCQ)]

3 + (1 + 4) + 4 = 12

 $(3 \times 4) = 12$

- 9. Write short notes on (*Any Three*)
 - a> Hamming Code
 - b> Trellis diagram.
 - c> Shannon-Fano code.
 - d> Galois Field
 - e> Source coding. [CO2, (Remember/LOCQ)]

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	25 %	32 %	43 %

After the completion of the course students will be able to **Course Outcome (CO)**:

Derive equations for entropy mutual information and channel capacity for all types of channels.

ECEN 4102

B.TECH/ECE/7TH SEM/ECEN 4102(BACKLOG)/2021

- Distinguish between different types of error correcting codes
- Explain various methods of generating and detecting different types of error correcting codes
- ► Formulate the basic equations of linear block codes, Cyclic codes.
- ► Learn the basics of convolution code, linear algebra and BCH code.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question

Department & Section	Submission link:
ECE BACKLOG	Join the Backlog classroom using the link: https://classroom.google.com/c/NDY0NDY3Mjk1NDI1?cjc=dzp3ice