
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/315715148

Design, Develop and Implement an Efficient Polynomial Divider

Article · April 2017

CITATIONS

0
READS

885

2 authors:

Some of the authors of this publication are also working on these related projects:

Vision Research View project

An intelligent vision system for monitoring security and surveillance of ATM View project

Purbayan Deb

Heritage Institute of Technology

1 PUBLICATION 0 CITATIONS

SEE PROFILE

Anindya Sen

Heritage Institute of Technology

54 PUBLICATIONS 308 CITATIONS

SEE PROFILE

All content following this page was uploaded by Anindya Sen on 31 March 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/315715148_Design_Develop_and_Implement_an_Efficient_Polynomial_Divider?enrichId=rgreq-4e7ed1e1866b78696169e1fa6d9bb752-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcxNTE0ODtBUzo0Nzc5MjM5NDY4MzE4NzJAMTQ5MDk1NzM1NjI0NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/315715148_Design_Develop_and_Implement_an_Efficient_Polynomial_Divider?enrichId=rgreq-4e7ed1e1866b78696169e1fa6d9bb752-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcxNTE0ODtBUzo0Nzc5MjM5NDY4MzE4NzJAMTQ5MDk1NzM1NjI0NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Vision-Research-4?enrichId=rgreq-4e7ed1e1866b78696169e1fa6d9bb752-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcxNTE0ODtBUzo0Nzc5MjM5NDY4MzE4NzJAMTQ5MDk1NzM1NjI0NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/An-intelligent-vision-system-for-monitoring-security-and-surveillance-of-ATM?enrichId=rgreq-4e7ed1e1866b78696169e1fa6d9bb752-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcxNTE0ODtBUzo0Nzc5MjM5NDY4MzE4NzJAMTQ5MDk1NzM1NjI0NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-4e7ed1e1866b78696169e1fa6d9bb752-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcxNTE0ODtBUzo0Nzc5MjM5NDY4MzE4NzJAMTQ5MDk1NzM1NjI0NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Purbayan-Deb-2?enrichId=rgreq-4e7ed1e1866b78696169e1fa6d9bb752-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcxNTE0ODtBUzo0Nzc5MjM5NDY4MzE4NzJAMTQ5MDk1NzM1NjI0NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Purbayan-Deb-2?enrichId=rgreq-4e7ed1e1866b78696169e1fa6d9bb752-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcxNTE0ODtBUzo0Nzc5MjM5NDY4MzE4NzJAMTQ5MDk1NzM1NjI0NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Heritage-Institute-of-Technology2?enrichId=rgreq-4e7ed1e1866b78696169e1fa6d9bb752-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcxNTE0ODtBUzo0Nzc5MjM5NDY4MzE4NzJAMTQ5MDk1NzM1NjI0NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Purbayan-Deb-2?enrichId=rgreq-4e7ed1e1866b78696169e1fa6d9bb752-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcxNTE0ODtBUzo0Nzc5MjM5NDY4MzE4NzJAMTQ5MDk1NzM1NjI0NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anindya-Sen-2?enrichId=rgreq-4e7ed1e1866b78696169e1fa6d9bb752-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcxNTE0ODtBUzo0Nzc5MjM5NDY4MzE4NzJAMTQ5MDk1NzM1NjI0NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anindya-Sen-2?enrichId=rgreq-4e7ed1e1866b78696169e1fa6d9bb752-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcxNTE0ODtBUzo0Nzc5MjM5NDY4MzE4NzJAMTQ5MDk1NzM1NjI0NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Heritage-Institute-of-Technology2?enrichId=rgreq-4e7ed1e1866b78696169e1fa6d9bb752-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcxNTE0ODtBUzo0Nzc5MjM5NDY4MzE4NzJAMTQ5MDk1NzM1NjI0NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anindya-Sen-2?enrichId=rgreq-4e7ed1e1866b78696169e1fa6d9bb752-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcxNTE0ODtBUzo0Nzc5MjM5NDY4MzE4NzJAMTQ5MDk1NzM1NjI0NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anindya-Sen-2?enrichId=rgreq-4e7ed1e1866b78696169e1fa6d9bb752-XXX&enrichSource=Y292ZXJQYWdlOzMxNTcxNTE0ODtBUzo0Nzc5MjM5NDY4MzE4NzJAMTQ5MDk1NzM1NjI0NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume VI, Issue III, March 2017 | ISSN 2278-2540

www.ijltemas.in Page 78

Design, Develop and Implement an Efficient

Polynomial Divider
Purbayan Deb

1
, Anindya Sen

2

1,2
 Department of Electronics and Communication Engineering (VLSI), Heritage Institute of Technology, Kolkata, West Bengal

Abstract- Polynomial Division is a most common numerical

operation experienced in many filters and similar circuits next to

multiplication, addition and subtraction. Due to frequent use of

such components in mobile and other communication

applications, a fast polynomial division would improve overall

speed for many such applications. This project is to design,

develop and implement an efficient polynomial divider

algorithm, along with the circuit. Next its output performance

result is verified using Verilog simulation. A literature survey on

the normal division algorithms currently used by ALU’s to

perform division for large numbers, yielded Booth’s algorithm,

Restoring and Non-restoring algorithm. Verilog simulation of

these algorithms were used to derive efficiency in terms of the

timing characteristics, required chip area and power dissipation.

Initially, performance analysis of the existing algorithms was

done based on the simulated outputs. Later similar analysis with

the updated polynomial divider circuit is performed.

Keywords- Division, Polynomial, Booth’s algorithm, Restoring

algorithm, Non-restoring algorithm, Verilog.

I. INTRODUCTIONS

hroughout the years, mathematicians and engineers have

developed many algorithms to divide numbers. The

ALU which is primarily used for division has gone through

many changes in its design. One of these changes was in its

division algorithms. In a typical computer, an ALU is called

upon to do hundreds of division operations per second.

Divider circuits are used for various purposes like error

correcting codes. So to perform at its peak, the ALU„s

algorithms need to be as efficient as possible. However, some

of these algorithms work better when computing the result of

the operation by hand than using a computer and so these

algorithms are not efficient in every case [1].

 The traditional pen and paper algorithm, when converted

to computer algorithm, resulted in the Booth‟s algorithm,

Restoring Division algorithm [5]. Smaller improvements

have been made to the restoring division algorithm, which

resulted in Non-Restoring Division algorithm and many high

radix algorithms, later combinational array divider circuits are

also implemented for the division purpose [6]. In many cases,

division is performed by taking the inverse of the divider and

then multiplying the two numbers.

 Division methods are divided in five classes that include

iteration, digit recurrence, very high radix, table look up and

variable latency. Each of these classes of division is

implemented differently in hardware (using multiplication,

subtraction, table look up, etc.).

 Some algorithms use multiple classes rather than just one

in particular. This report focuses on subtraction-based

methods, such as restoring and non-restoring division

algorithms, to obtain the final answer in a division

computation. Digit recurrence algorithm is another division

algorithm and they produce one digit of the final quotient per

iteration.SRT (Sweeney Robertson and Tocher) division

algorithm is very commonly use for digit recurrence purpose

[12].

 Use of Verilog code, which is a Hardware Descriptive

language (HDL) will be done for the simulation purpose of

the project.

II. MOTIVATION

 Despite the recent improvement in division algorithms,

division remains a complex operation and is therefore not

implemented in many low cost or low power ALUs. Division

can add more complexity to the computations since it can

have invalid inputs such as division by zero and can have

multiple machine cycles used in it. The time taken for its

operation is also high and the circuits get more complex if

more precision is needed and so it is avoided by most ALU‟s

[1].

 A division operation is an indispensible tool for a high

performance system. A common perception of division is that

it is an infrequent operation whose implementation need not

receive high priority. However, it has been shown that

ignoring its implementation can result in significant system

performance degradation for many applications. Refining

the polynomial division algorithm helps in improving the

precision of the result and reduces the delay to obtain output.

So implementation of a proper divider circuit is very

important in an ALU.

III. OBJECTIVE

 The main objective of the project work will be to focus

on using the most optimal division algorithm and to design an

T

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume VI, Issue III, March 2017 | ISSN 2278-2540

www.ijltemas.in Page 79

efficient polynomial divider circuit & simulate its

performance.

 To find the most optimal algorithm timing characteristics

and area report generated by the Xilinx tool for various

division algorithms will be compared and analyzed.

IV. TOOL USED

 For this project Verilog, HDL is used under Xilinx ISE

Design Suite 13.4 platform.

V. LITERATURE SURVEY

A. Booth’s Algorithm

Fig.1 Flowchart of booth‟s algorithm for division

 Division is done by doing shifts and subtractions.

Dividing a number of 2n bits by a number of n bits results in a

quotient of up to 2n bits and a remainder of up to n bits.

 At start, the n bits divisor is shifted to the left, while n

0‟s are added to its right. This way the dividend and the

divisor are 2n bits long.

 At each step (repeating the following n+1 time), subtract

the divisor from the dividend. If the result is non-negative,

Shift the quotient left and place 1 in the new place.

Else, Shift the quotient left and place 0.

 Restore the dividend by adding the divisor to it. Shift the

divisor to the right [2].

 At start, the dividend occupies the right half of the

remainder register. The left half of the reminder register is full

with zeros. Shift reminder left 1 position.

 At each step, the control subtracts the divisor from the

left half of the remainder register, putting there the result. If

the remainder is negative, it restores it. Then, instead of

shifting the divisor to the right, it shifts the remainder to the

left and inserts 0 or 1, according to the sign of the remainder.

0 if the sign bit is 1 and 1 if the sign bit is 0.

 At the end, the remainder register contains the quotient in

its right half and the remainder in its left half [3].

 The following example (7/2) will illustrate the division

process of booth‟s algorithm clearly.

TABLE I

Shows Division of 0111 / 0010 by Booth‟s Algorithm

Itera-

tion
Step Quotient Divisor

Remai

nder

0 Initial values 0000
0010

0000

0000

0111

1

1: Rem=Rem-Div 0000
0010

0000

1110

0111

2b: Rem<0=>+Div, sll

Q,Q0=0
0000

0010

0000

0000

0111

3: Shift Div right 0000
0001

0000

0000

0111

2

1: Rem=Rem-Div 0000
0001

0000

1111

0111

2b: Rem<0=>+Div, sll

Q, Q0=0
0000

0001

0000

0000

0111

3: Shift Div right 0000
0000

1000

0000

0111

3

1: Rem=Rem-Div 0000
0000

1000

1111

1111

2b: Rem<0=>+Div, sll

Q, Q0=0
0000

0000

1000

0000

0111

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume VI, Issue III, March 2017 | ISSN 2278-2540

www.ijltemas.in Page 80

3: Shift Div right 0000
0000

0100

0000

0111

4

1: Rem=Rem-Div 0000
0000

0100

0000

0011

2a: Rem≥0=> sll Q,

Q0=1
0001

0000

0100

0000

0011

3: Shift Div right 0001
0000

0010

0000

0011

5

1: Rem=Rem-Div 0001
0000

0010

0000

0001

2a: Rem≥0=> sll Q,

Q0=1
0011

0000

0010

0000

0001

3: Shift Div right 0011
0000

0001

0000

0001

B. Restoring Division Algorithm

 Digital Recurrence algorithms use subtractive methods to

calculate quotients one digit per iteration. Restoring division

algorithm is based on the digital recurrence algorithm [1].

Fig.2 Flowchart for restoring division algorithm

 Restoring division follows the same method as the pen

and paper long division algorithm. In the long division

algorithm, the divisor is compared to the left digits of the

dividend. If the divisor is bigger than the dividend numbers

being compared, then a 0 in appended to the quotient and

divisor is shifted to the right to compare with bigger dividend

digits. If the divisor is smaller than the dividend, then the

divisor being compared is subtracted from the dividend and

the result is stored as remainder, while the number of times

the divisor can go into the dividend is appended to the

quotient [4].

 During the next loop, the dividend and the remainder

need to be appended together to form the new dividend. This

process is repeated until the dividend cannot be divided

further by the divisor. The same process is applied in the

Restoring division algorithm.

 To decide whether the divisor is bigger than the dividend

bits it is being compared to, it subtracts the divisor from the

dividend bits and stores the result in remainder field. If the

divisor is bigger than the dividend bits, then the result will be

negative.

 If the result is negative, then the remainder is wrong and

it must be “restored” to the previous value and a 0 must be

appended to the quotient before the divisor is shifted to the

right (or dividend shifted to the left) and subtraction is tried

again.

 If the result is positive, then divisor is bigger than the

dividend bits being compared to and the result is valid.

Therefore, a 1 is appended to the quotient.

 Below the algorithm for restoring division method is

explained with an example by dividing 0011 1101 (61), by

01010 (10) and how it works.

 Following the Restoring division algorithm discussed

above, the first step is to shift the quotient 1 bit to the left.

 Second, subtract the divisor from the left half of the

dividend and update the left half of the quotient with the

answer. This new dividend value now has the remainder and

rest of the quotient appended together.

 To avoid destroying the initial dividend value, the

dividend can be copied into the remainder register and use

remainder register as the dividend value.

 If the new dividend is less than zero, then shift the

quotient left 1 bit and restore the previous value of the

dividend. Otherwise, shift the quotient left 1 bit and set the

least significant bit to 1. Repeat for procedure 4 times to

evaluate all bits of the dividend [5].

 At the end of the procedure, the quotient value will be the

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume VI, Issue III, March 2017 | ISSN 2278-2540

www.ijltemas.in Page 81

remainder.

Dividend z: 0011 1101 (61),

Divisor d: 01010 (10)

Quotient : 0110 (6),

Remainder : 0001 (1)

TABLE II

Division of 00111101 / 01010 by Restoring Method

C. Non-Restoring Division Algorithm

The non-restoring divide does not “restore” the

remainder to the correct value but leaves it incorrect until the

next cycle [1]. In the restoring divide algorithm, if we had

restored the partial remainder to its correct value, we would

proceed with the next shift and trial subtraction getting the

result. Instead, because we used the incorrect partial

remainder, a shift and trial subtraction would yields result

which is not the intended. However, an addition would do the

trick.

 The non-restoring algorithm can result in a negative

remainder, which is incorrect. Therefore, a correction step is

needed to obtain the correct remainder. The algorithm to

perform non-restoring division is as follows:

Non-restoring divide algorithm [6]:

i. Shift remainder left 1 bit.

ii. If remainder is negative, add divisor to the left half

of

iii. the remainder. Shift quotient left 1 bit.

iv. If remainder is positive, subtract divisor from the left

v. half of the remainder. Shift quotient left 1 bit and

add 1.

vi. Repeat for number of bits in divisor.

vii. Correction step: If remainder is negative, add divisor

to the remainder to obtain the correct value.

Fig.3 Flowchart for non-restoring division algorithm

Here, the dividend is not restored after each unsuccessful

subtraction operation as was in restoring algorithm.

Instead, the following logic is followed:

If the current remainder is positive,

Then Q0 = 1.

Next operation will be shift and subtract

Else (remainder negative),

Then Q0 = 0.

Next operation will be shift and add.

Example: 10 / 4

 Quotient = 2, Remainder = 2, A = 0

 Q = Dividend = 10 = 1010

 B = Divisor = 4 =0100 ,

Iteration P Q

1 Shift z left once: 0111101

Subtract d from left half of z: 11111101

Result is negative. Restore to previous

value: 0111101

0

2 Shift z left once: 111101

Subtracting d from left half of z: 010101

Result is positive. New z is 010101

01

3 Shift z left once: 1010 1

Subtracting d from left half of z: 00001

Result is positive. New z is 00001

011

4 Shift z left once: 0001

Subtracting d from left half of z: 10111

Result is negative: Restore to previous

value: 0001

0110

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume VI, Issue III, March 2017 | ISSN 2278-2540

www.ijltemas.in Page 82

- B means 2‟sComplement of B = 4

 B =00100

 11 011 1‟s Complement of B

 + 1 addition of 1 to 1‟s Complement of B

 11100 2‟s Complement of B

If Q (Divisor) register contains 4 bits then Contents of A

register is 4+1=5 bits

TABLE III

Division of 1010 / 0100 by Non-Restoring Method

D. LFSR (Linear Feedback Shift Registers)

 Linear Feedback Shift Registers (LFSR) can be used for

polynomial division, among its other uses.

 Two example LFSRs are shown in Fig4 & Fig5. Note that

both these structures use D-type flip-flops and linear logic

elements (EOR gates) to realize LFSRs [8]. The basic

difference in these two structures being the circuit of Fig4

uses linear elements interspersed between the flip-flops

whereas the circuit of Fig5 has no linear element appearing

between the flip-flops instead the linear elements appear only

in the feedback path. It is for this reason the realization of

Fig4 is called internal-EOR LFSR and the realization of Fig5

is called external EOR LFSR. A equivalence exists between

the two structures in the sense that knowing the properties of

the first structure one can deduce the properties of the second

structure.

 The circuit in Fig4 is better for its high-speed operation

since they don't have multiple adder combination propagation

delays [9].

Fig.4 Internal EOR type LFSR

Fig.5 External EOR type LFSR

 Polynomial arithmetic can be performed using this

LFSR circuit. The LFSR here does the shifting operation at

each clock cycle and keeps on generating new patterns based

on the input values. One thing to be noted here during

polynomial division is that all these polynomials are not

usually written with minus signs, but they could be, therefore

a coefficient of –1 is equivalent to coefficient of 1 and

polynomials with co-efficient other than 1 cannot be used as

in digital domain we have only 0 & 1[10].

Fig.6 A basic polynomial division register

VI. METHODOLOGY

A. Preliminary Work

 In this project firstly comparison of the restoring and non

Represents EOR gate

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume VI, Issue III, March 2017 | ISSN 2278-2540

www.ijltemas.in Page 83

restoring algorithms for division are done and the results are

obtained.

 The comparison is on the basis of area analysis, timing,

delay and power consumed. The algorithms are implemented

using Verilog code and done the comparison.

 I have done the coding in Xilinx ISE Design Suite 13.4

tool.

B. Proposed Implementation in Polynomial Divider Circuit

Steps to be followed for implementation of polynomial

division-

i. Firstly the circuit is built on basis of the denominator

given.

ii. The input is given serially in the circuit.

iii. The output of each stage is calculated at each clock

cycle.

iv. The process continues until all the bits of input are

given.

v. The quotient is calculated from the outputs of the

final register.

vi. Finally, the remainder is calculated from the output

of all the registers in the final clock cycle.

Below two examples are given to explain the process of

polynomial division-

i) (X
3
+X

2
+1)/(X

2
+1)

 Fig.7 Circuit for (X3+X2+1)/(X2+1)

Fig.8 Division using long division method

TABLE IV

LFSR Stages Corresponding to the Input Applied

INPUT D0 D1 OUTPUT STREAM

1 0 0 0

1 1 0 00

0 1 1 001

1 1 1 0011

 0 1

Here the final output stream is 0011.

So the quotient is 0*X
3
 + 0*X

2
+ 1*X

1
 + 1*X

0
 = X+1

The value of D0 and D1 in final cycle is 0 & 1 respectively.

So, remainder is 0*X
0
 + 1*X

1
 =X

Here any numerator can be applied and the output result will

be obtained using the same denominator.

ii) (X
7
+X

6
+X

5
+X

4
+X

2
+1)/(X

5
+X

4
+X

2
+1)

 Fig.9 Circuit for (X7+X6+X5+X4+X2+1)/(X5+X4+X2+1)

TABLE V

 LFSR Stages Corresponding to the Input Applied

INPUT D0 D1 D2 D3 D4 OUTPUT

STREAM

1 0 0 0 0 0 0

1 1 0 0 0 0 00

1 1 1 0 0 0 000

1 1 1 1 0 0 0000

0 1 1 1 1 0 00000

1 0 1 1 1 1 000001

0 0 0 0 1 0 000010

1 0 0 0 0 1 0000101

 0 0 1 0 1

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume VI, Issue III, March 2017 | ISSN 2278-2540

www.ijltemas.in Page 84

Here the final output stream is 0000101.

So the quotient is

0*X
6
+ 0*X

5
+ 0*X

4
 + 0*X

3
 + 1*X

2
+ 0*X

1
 + 1*X

0
 =X

2
+1

The value of D0,D1,D2,D3,D4 in final cycle is 0,0,1,0,1

respectively.

So, remainder is

0*X
0
+ 0*X

1
+ 1*X

2
 + 0*X

3
 + 1*X

4
 = X

2
+X

4
.

Fig.10 Division using long division method

 These are simulated using the Xilinx tool and the results

are compared.

 The max power of the denominator can be 9312 as this is

the number of Flip Flops supported by the Xilinx tool.

 This division operation can also be performed using

multiplication of LFSR. But that will be a much more time

consuming process.

Example- X
2
/X= X

 This will be the process if it is done normally using

polynomial division method.

 But if multiplication is used it will be, X
2
 * X

-1
= X

 So the number of operations needed to be performed in

this method will be more and hence more time will be

consumed [11].

VII. RESULT

Fig.11 Division of 13 by 5 using restoring division

Fig.12 Area analysis for restoring division

Fig.13 Timing analysis for restoring division

Fig.14 Power analysis for restoring division

Fig 11, Fig 12, Fig 13, Fig 14 represents the waveform of

output of the division, area analysis, timing analysis and

power analysis respectively.

Fig.15 Division of 13 by 5 using non-restoring division

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume VI, Issue III, March 2017 | ISSN 2278-2540

www.ijltemas.in Page 85

Fig.16 Area analysis for non-restoring division

Fig.17 Timing analysis for non-restoring division

Fig.18 Power analysis for non-restoring division

Fig 15, Fig 16, Fig 17, Fig 18 represents the waveform of

output of the division, area analysis, timing analysis and

power analysis respectively.

Fig.19 (X3+X2+1)/(X2+1) using LFSR

Fig.20 Area analysis for polynomial division of (X3+X2+1)/(X2+1)

Fig.21 Timing analysis for polynomial division of (X3+X2+1)/(X2+1)

Fig.22 Power analysis for polynomial division of (X3+X2+1)/(X2+1)

Fig 19, Fig 20, Fig 21, Fig 22 represents the waveform of

output of the division, area analysis, timing analysis and

power analysis respectively.

Fig23 (X7+X6+X5+X4+X2+1)/(X5+X4+X2+1) using LFSR

Fig.24 Area analysis for polynomial division of

(X7+X6+X5+X4+X2+1)/(X5+X4+X2+1)

Fig.25 Timing analysis for polynomial division of

(X7+X6+X5+X4+X2+1)/(X5+X4+X2+1)

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume VI, Issue III, March 2017 | ISSN 2278-2540

www.ijltemas.in Page 86

Fig.26 Power analysis for polynomial division of

(X7+X6+X5+X4+X2+1)/(X5+X4+X2+1)

Fig 23, Fig 24, Fig 25, Fig 26 represents the waveform of

output of the division, area analysis, timing analysis and

power analysis respectively.

TABLE VI

Comparison of Timing, Area and Power of Restoring, Non- Restoring and Polynomial Division

Restoring Division Non-Restoring Division Polynomial Division

1101 / 101 1101 / 101 (X3+X2+1)/(X2+1)
(X7+X6+X5+X4+X2+1)/

(X5+X4+X2+1)

Timing

Analysis

Maximum input arrival time

after clock-18.650ns

Maximum output required

time after clock-4.283ns

Maximum input arrival

time after clock-14.849ns

Maximum output required

time after clock-4.283ns

Maximum input arrival

time after clock-3.700ns

Maximum output

required time after clock-

4.310ns

Maximum input arrival

time after clock-3.886ns

Maximum output required

time after clock-4.450ns

Area

Analysis

No. of Slice-18

No. of 4 input LUT- 30

No. of Slice-18

No. of 4 input LUT- 33

No. of Slice-1 No. of Slice-3

No. of Slice Flip-Flop-2 No. of Slice Flip-Flop-5

No. of 4 input LUT-2 No. of 4 input LUT-4

Power Analysis Total power- 0.083W Total power- 0.083W Total power- 0.081W Total power- 0.081W

VIII. CONCLUSION

 In this paper analysis of various division algorithms are

done. Their timing, area & power comparison are obtained.

 From the analysis I have seen that though the number of

LUT utilization in non-restoring algorithm is more but the

timing performance of the non-restoring algorithm is much

better. So from these to algorithm analysis it can be concluded

that the non restoring algorithm is by far better than restoring

algorithm.

 Later in the next part a polynomial divider is

implemented using LFSR and the simulation is done using

Verilog. The results obtained are then compared and we see

that the delay is much less in this method. We also see that

more the maximum power of denominator more is the delay.

The power consumed by the polynomial divider circuit is also

bit less. Overall it can be said that by implementing the

polynomial division the delay and area can be minimized a

lot.

 As the complexity in designing a polynomial divider

circuit is high, need for more efficient design is very high in

market. Thus seeing the growing needs my project can be

highly beneficial.

IX. FUTURE WORK TO BE DONE

 Up to this point research on divider circuits like Booth‟s

algorithm, Restoring algorithm & Non-restoring algorithm are

done and a polynomial divider using LFSR‟s serially is

implemented.

 So, the next work will be to implement the LFSRs in

parallel to reduce the time required for execution of the

division method.

ACKNOWLEDGEMENT

 The road of knowledge is long and full of obstacles,

but going over those obstacles is what ultimately enlightens

the individual and strengthens ones spirit. I have been very

fortunate to walk through the road of knowledge, not alone,

but accompanied by the brightest and warm hearted individual

I have ever met.

 I take this opportunity to thank my project guide Sri

Anindya Sen (Phd) for guiding me in this paper.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)
Volume VI, Issue III, March 2017 | ISSN 2278-2540

www.ijltemas.in Page 87

 He has been a great source of motivation for me,

which inspired me a lot to take up the project and deliver it in

a nicest possible way.

 Finally, I would also like to thank all the faculty

members and staff of Electronics and Communication

Engineering Department for their time to time support and co-

operation, which has helped me a lot.

 PURBAYAN DEB

REFERENCES

[1]. Performance analysis of various multiplication and division

algorithms for large numbers Harpreet Kaur, 2010

[2]. Patterson, David and Hennessy, John. Computer Organization and

Design - The Hardware / Software Interface. San Francisco:

Morgan Kaufmann Publishers, 1998.

[3]. Lecture 5 Multiplication and Division. ECE 0142 Computer

Organization

[4]. Division Algorithms and Hardware Implementations, Sherif Galal

Dung Pham EE 213A: Advanced DSP Circuit Design

[5]. Computer Principles And Design In Verilog HDL Yamin Li Hosei

University, Japan

[6]. https://asnaikblog.wordpress.com/video-tutorial-for-non-restoring-

method-of-division-operation/

[7]. Linear Feedback Shift Registers Theory and. Applications. Kewal

K. Saluja. Department of Electrical and Computer Engineering.

University of Wisconsin-madison

[8]. Implementation and evaluation of a polynomial-based division

algorithm Examensarbete utfört vid Elektroniksystem, Linköpings

Tekniska Högskola Av Stefan Pettersson

[9]. Polynomial Multipliers and Dividers, Shift Register Generators

and Scramblers Phil Lucht Rimrock Digital Technology, Salt

Lake City, Utah 84103

[10]. Mr. Hiren G. Patel, Dr. D.M.Patel, Mr. Milan A. Chaudhari, Mr.
Mahavirsinh A. Zala “An Automated CRC Engine” International

Journal of Engineering Research And Management (IJERM) ISSN

: 2349- 2058, Volume-1, Issue-3, June 2014, PP. 11-15

[11]. https://www.freemathhelp.com/forum/archive/index.php/t-

56823.html

[12]. Oberman, Stuart F. and Flynn, Michael J. "Division Algorithms

and Implementations." IEEE Transcation on Computers (1997):

833-854.

View publication statsView publication stats

http://www.dissertation.com/abstracts/1871884
http://www.dissertation.com/abstracts/1871884
http://www.dissertation.com/search?author=Harpreet%20Kaur
http://www.dissertation.com/search?year=2010
https://www.researchgate.net/publication/315715148

