MICROWAVE ENGINEERING (ECEN 3103)

Time Allotted : 3 hrs

Full Marks: 70

 $10 \times 1 = 10$

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

(i)	In TE ₁₀ mode of w dimension of the w is: (a) 40 cm	vave propagation in a p	rectangular waveguide, in the cut off wavelength for (c) 4 cm	f the larger r that mode	
		(b) 0.4 cm		(u) 4 mm.	
(ii)	X-band frequencies (a) 3.5 to 5.5 GHZ (c) 8 to 12 GHZ	s are in which of the follo	following ranges? (b) 5.5 to 8 GHZ (d) 12.4 to 16.4 GHZ.		
(iii)	If the loss tangent of a rectangular waveguide is 0.0004, then Q due to dielectric loss is				
	(a) 1250	(b) 1800	(c) 2500	(d) 2450.	
(iv)	Scattering matrix for a reciprocal networl (a) Symmetric (c) Skew symmetric		s: (b) Unitary (d) Identity matrix.		
(v)	A quarter-wave transformer matching a 75Ω source with a 300 Ω load should have a characteristic impedance of				
	(a) 50 Ω	(b) 100 Ω	(c) 150 Ω	(d) 200 Ω.	
(vi)	 Match list-I with list-II and select the correct answer using the codes given below the lists: List-I A. Ratio of maximum energy stored to energy dissipated per cycle B. TEM mode in a lossless medium C. Ratio of frequency in radian to phase velocity of EM wave D. TE₁₁ is the mode of lowest cut-off frequency List-II 1. Propagation constant 				

- 2. Cut-off frequency is zero
- 3. Quality factor of a cavity
- 4. Cylindrical waveguide Codes:
- В С D B C D Α А 3 2 4 1 (b) 2 3 1 4 (a) 2 2 3 (c) 3 1 4 (d) 4 1

(viii) Any device with negative impedance as its characteristic property can be called:
 (a) Amplifier
 (b) Energy sink
 (c) Oscillator
 (d) Energy source.

(ix) A two-port non-reciprocal device which produces a minimum attenuation to e.m wave propagation in one direction and a very high attenuation in opposite direction is generally known as
 (a) Phase shifter
 (b) Isolator
 (c) Polariser
 (d) Circulator

 $\begin{array}{ll} \text{(x)} & & \text{Transducer power gain of a two-port network is dependent on} \\ \text{(a) } Z_{\text{S}} \text{ and } Z_{\text{L}} & \text{(b) } Z_{\text{S}} \\ \text{(c) } Z_{\text{L}} & \text{(d) Independent of both the impedances} \end{array}$

Group – B

- (a) Represent electric field and magnetic field variation with respect to space with a suitable diagram for dominant mode in a rectangular waveguide.
 [(C01, C02) (Understand/LOCQ)]
 - (b) A 1-cm X 3-cm rectangular air-filled waveguide operates in the TE₁₂ mode at a frequency that is 20% higher than the cut off frequency? Find: (a) the operating frequency, (b) the phase and group velocities. [(C01, C02) (Analyse/IOCQ)]
 - (c) Design an air-filled cubical cavity to have its dominant resonant frequency at 3 GHz. [(C02) (Create/ HOCQ)]

4 + 4 + 4 = 12

- 3. (a) Explain degenerate mode of a rectangular waveguide? [(CO2)(Understand /LOCQ)]
 - (b) In an air-filled rectangular waveguide with a = 2.286 cm and b = 1.016 cm, the ycomponent of the TE mode is given by $E_y=sin(2\pi x/a) cos(3\pi y/b) sin(10\pi \times 10^{10}t-\beta z) V/m$ Find a) operating mode b) Propagation constant c) Intrinsic impedance. [(C01, C02)(Analyze/IOCQ)]
 - (c) Clarify the statement that phase velocity inside a rectangular waveguide is greater than the velocity of light. [(CO2), Understand/LOCQ]

2 + 6 + 4 = 12

Group – C

- 4. (a) Generate the S matrix for lossless Magic Tee. [(CO3) (Evaluate/ IOCQ])]
 - (b) Explain the statement- 'A three port network cannot be simultaneously lossless, reciprocal and matched at all ports. [(CO3) ([Understand/LOCQ)]
 - (c) A two-port network has the following s-matrix

$$[S] = \begin{bmatrix} 0.4 \angle 0^0 & 0.72 \angle -40^0 \\ 0.8 \angle 40^0 & 0.2 \angle 0^0 \end{bmatrix}$$

- (i) Find return loss at port 2 if port 1 is terminated with a matched load.
- (ii) Find return loss at port 1if the port 2 is terminated with a short circuit load.[(CO3) (Analyze/IOCQ)]

5 + 3 + 4 = 12

- 5. (a) A 20mW signal is fed into one of the collinear arms of the E plane T junction. Find the power delivered to each port when other ports are terminated with matched load. [(CO3) (Analyze /IOCQ)]
 - (b) Find S -matrix for four port symmetrical direction coupler. [(CO3) (Analyze /IOCQ)]

5 + 7 = 12

Group – D

- 6. (a) What is the main purpose of using helical structure in a traveling wave tube? [(CO4)(Understand /LOCQ)]
 - (b) If η_{TE} is the intrinsic wave impedance of TE mode and η_{TM} is the intrinsic wave impedance of TM mode, then prove the relation given below mode η_{TE} . $\eta_{\text{TM}}=\eta^2$ [(CO2)(Analyse/IOCQ)]
 - (c) In a rectangular waveguide for which a=1.5cm, b=0.8cm, σ =0, μ = μ_0 and \mathcal{E} =4 \mathcal{E}_{0} ,

$$H_x = 2\sin\left(\frac{\pi x}{a}\right)\cos\left(\frac{3\pi y}{b}\right)\sin(\pi \times 10^{11}t - \beta z) A/m$$

Determine

- (a) The mode of operation
- (b) The cut off frequency
- (c) The phase constant β
- (d) The propagation constant
- (e) The intrinsic wave impedance. [(CO1) (Evaluate/HOCQ)]

1 + 4 + 7 = 12

- 7. (a) Explain current voltage relationship of a Gunn diode with a suitable energy band diagram. [(CO4) (Remember/LOCQ)]
 - (b) Represent the equivalent circuit for small signal analysis of MESFET. [(CO3) (Understand/LOCQ)]
 - (c) Find the transit time of a two-cavity klystron work in 5 GHz with a DC beam voltage 10Kv and 2mm cavity gap. The magnitude of the gap voltage is 100V.
 [(CO1) (Analyze/IOCQ)]

6 + 3 + 3 = 12

Group - E

- Differentiate between Butterworth filter and Chebyshev filter. 8. (a) [(CO5) (Understand/LOCQ)]
 - State one application of PIN diode. [(CO5) (Remember/LOCQ)] (b)
 - Design a microstrip low-pass filter with 2 GHz cut-off frequency, 30 dB (c) attenuation at 3.5 GHz frequency for Chebyshev attenuation response with 0.2 dB ripple. The prototype elements are $g_0 = 1 = g_6$, $g_1 = g_5 = 1.3394$, $g_2 = g_4 = g_5$ 1.337, g₃ = 2.166. [(CO6) (Create/HOCQ)]

3 + 1 + 8 = 12

A microwave transistor has the following S –parameters at 10 GHz, with a 50Ω 9. (a) reference impedances

$$S_{11} = 0.45 \angle 150^{\circ}$$
$$S_{12} = 0.01 \angle -10^{\circ}$$
$$S_{21} = 2.05 \angle 10^{\circ}$$

$$S_{22} = 0.40 \angle -150^{\circ}$$

The source impedance is $Zs = 20 \Omega$ and the load impedance is $Z_L = 30\Omega$. Find the power gain, the available gain, and the transducer power gain. [(CO5) (Analyze/IOCQ)]

(b) The S -parameter for GaAs FET at 2 GHz are given below ($Z0=50\Omega$).

$$S_{11} = 0.894 \angle - 60.6^{\circ}$$
$$S_{12} = 3.122 \angle 123.6^{\circ}$$

$$\begin{split} S_{21} &= 0.025 \angle 62.4^0 \\ S_{22} &= 0.781 \angle -27.6^0 \end{split}$$

Check whether this system is conditionally stable or unconditionally stable. [(CO5) (Evaluate/IOCQ)]

7 + 5 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	28.1 %	41.7 %	30.2 %

Course Outcome (CO):

After the completion of the course students will be able to

- 1. Apply previous E.M. theory concepts to understand microwave engineering.
- 2. Identify high frequency electromagnetic wave propagation characteristics through guided media.
- 3. Analyze microwave passive components and circuits.
- 4. Students should be able to enhance their knowledge on semiconductor and vacuum tube devices operating at high frequency.
- 5. Design high frequency filters and amplifiers.
- 6. Implement the concepts in developing different prototype microwave systems.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; **HOCQ: Higher Order Cognitive Question ECEN 3103**

Department & Section	Submission Link
ECE A	https://classroom.google.com/u/0/w/NDA1MzY3OTcwMDA4/tc/NDY0MjE3NDQ5MjI2
ECE B	https://classroom.google.com/w/NDA1NTk4NDY3MTc4/tc/NDY0MTY3NTY4OTc0
ECE C	https://classroom.google.com/c/NDA1MzM5MTgxOTcy/a/NDU1MTUwMDI4OTky/details
Backlog	https://classroom.google.com/c/NDY0MTk3OTQxNDQ0?cjc=qmdih3d