B.TECH/AEIE/CE/ECE/EE/3RD SEM/MATH 2001(BACKLOG)/2021

MATHEMATICAL METHODS (MATH 2001)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

Choose the correct alternative for the following: $10 \times 1 = 10$ 1. The value of the integral $\oint_C \frac{z^2-z+1}{z-2} dz$ where C:|z| = 1 is (i) (c) $-2\pi i$ (a) 0 (b) $2\pi i$ (d) 1. The function $f(z) = \frac{1}{z}$ is analytic (ii) (a) at z = 0(b) at z = 1(c) at all points (d) Nowhere. The period of $\cos 2\pi x$ is (iii) (c) 2(a) 2π (d) 3. (b) 1 If $f(x) = x \sin x$, $-\pi \le x \le \pi$, be presented in Fourier series as (iv) $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos nx + b_n \sin nx]$ Then the value of a_0 will be (a) 2 (c) 0(d) 1. (b) 4(v) The value of $P_0(x)$ is (a) -1(b) 1 (c) 0(d) x. The value of $J_0(0)$ is (vi) $(a)^{\frac{1}{2}}$ (b) −1 (c) 1 (d) 0. (vii) $J_{\frac{1}{2}}(x) =$ (a) $\sqrt{\frac{2\pi}{x}}\cos x$ (b) $\sqrt{\frac{2\pi}{x}}\sin x$ (d) $\sqrt{\frac{2}{\pi x}} \sin x$. $(c)\sqrt{\frac{2}{\pi x}}\cos x$

MATH 2001

B.TECH/AEIE/CE/ECE/EE/3RD SEM/MATH 2001(BACKLOG)/2021

The function $f(z) = \overline{z}$ is (viii) (a) continuous at z = 0(b) differentiable at z = 0(d) not continuous at z = 0. (c) analytic

The order and the degree of the partial differential equation (ix) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = x^2 + y^2$ is (a) 2, 2 (b) 1, 2 (c) 2, 1 (d) 1,1.

The value of the integral $\oint_C \frac{dz}{z-1}$ where C is the circle |z| = 2 is (x) (a) 0(b) -1(c) πi (d) 2πi.

Group-B

- State Cauchy's Integral formula. Use it to evaluate the integral $\oint_C \frac{z}{(z^2-1)} dz$ 2. (a) where *C* is the circle |z| = 2.
 - Prove that $u = x^3 3xy^2 + 3x^2 3y^2 + 1$ is a harmonic function and (b) determine the corresponding analytic function u + iv.

6 + 6 = 12

3. (a) Show that the function
$$f(z) = \begin{cases} \frac{2xy^2}{x^3 + 4y^3}, & z \neq 0\\ 0, & z = 0 \end{cases}$$
 is not continuous at $z = 0$.

Determine the poles and residues at each of the poles of the function (b) $f(z) = \frac{z^2}{(z-1)^2(z+2)}$

6 + 6 = 12

Group - C

- 4. (a)
- Find the Fourier series expansion of the function $f(x) = \frac{\pi x}{2}$ in $0 \le x \le 2\pi$. Find the Fourier sine transform of the function $f(x) = \begin{cases} x, & 0 < x < a \\ 0, & x > a \end{cases}$. (b) 6 + 6 = 12
- 5. Find the half-range Fourier (i) sine series and (ii) cosine series of the function (a) f(x) = x in the interval 0 < x < 2.
 - Find the Fourier transform of the function $f(x) = \begin{cases} 1, & |x| \le 1\\ 0, & |x| > 1 \end{cases}$ (b)

6 + 6 = 12

Group - D

Solve in series the equation y'' + xy = 0 about the point x = 0. 6. (a)

Show that $P_n(-1) = (-1)^n$. (b)

8 + 4 = 12

MATH 2001

B.TECH/AEIE/CE/ECE/EE/3RD SEM/MATH 2001(BACKLOG)/2021

- 7. (a) Show that $\frac{d}{dx}[x^n J_n(x)] = x^n J_{n-1}(x)$. Hence show that $x J'_n(x) = -n J_n(x) + x J_{n-1}(x)$.
 - (b) Show that $\int_{-1}^{1} P_m(x) P_n(x) = 0$ when $\neq n$.

6 + 6 = 12

Group – E

- 8. (a) Form the partial differential equation from the relation $2z = (ax + y)^2 + b$, where *a* and *b* are arbitrary constants.
 - (b) Use Charpit's method to solve the partial differential equation px + qy = pq.

5 + 7 = 12

- 9. (a) Solve the partial differential equation: (mz ny)p + (nx lz)q = ly mx.
 - (b) Use method of separation of variable to solve the partial differential equation $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$, subject to the condition $u(x, 0) = 6e^{-3x}$.

6 + 6 = 12

Students having backlog in MATH2001 (old syllabus) are advised to follow the steps as mentioned below in order to submit the answer-scripts properly:

Step-I: Join the Google classroom by clicking the following link (note that you have to join using your institutional email account):

https://classroom.google.com/c/NDY0NTA4MTU3MjY4?cjc=yslwkq2

Step-II: Submit your answer script by clicking link below: https://classroom.google.com/c/NDY0NTA4MTU3MjY4/a/NDc0ODUxNTczMDcz/details