COMPILER DESIGN (CSEN 4111)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:			ng:	$10 \times 1 = 10$	
(3		A bottom up parser generates (a) Right most derivation (c) Leftmost derivation		(b) Rightmost derivation in reverse (d) Leftmost derivation in reverse.		
	(ii)	Assume S1 = the number S2 = the number of stat S3 = the number of stat Then which of the follo (a) S1=S2=S3 (c) S1 <s2=s3< td=""><td>tes in LALR(1) par tes in CLR(1) parso</td><td colspan="2">ser</td></s2=s3<>	tes in LALR(1) par tes in CLR(1) parso	ser		
	(iii)	Given below are the reg (a b)* (ii) (a*b Which of them are equinant (a) (i) and (ii) only (c) (ii) and (iii) only	o*)* (iii)	(ab)* (b) (i) and (iii) onl (d) None of them.	У	
	(iv)	Find the number of tok if(x>=y) z=0; (a) 8	ens in the followir (b) 9	ng code: (c) 10	(d) 11.	
	(v)	 Reduction in strength means (a) Replacing run time computation by compile time computation (b) Removing loop invariant computation (c) Removing common sub expression (d) Replacing a costly operation by a relatively cheaper one. 				
	(vi)	Which of the following (a) Semantic analysis (c) Intermediate code g		is an optional phase? (b) Lexical analysi (d) Code optimizat		

1

- (vii) If a grammar is LALR(1) then it is necessarily:
 (a) SLR(1)
 (b) LR(1)
 (c) LL(1)
 (d) None of the options.
- (viii) Which of the following is not a peephole optimization?
 - (a) Removal of a dead code
 - (b) Elimination of multiple jumps
 - (c) Elimination of loop invariant computations
 - (d) None of the above options.
- (ix) Which of the following is not the content of the activation record?
 (a) Temporary variables
 (b) Return values
 (c) Local variables
 (d) Address descriptor
- (x) An S-attributed grammar can be evaluated ______
 (a) Top down
 (b) Bottom up
 (c) Both
 (d) None.

Group – B

(a) Explain the different phases of a compiler, showing the output of each phase, using the example of the following statement:
 for (i=0:i<10:i++)

[(CO4) (Remember/LOCQ)]

(b) Construct DFA directly from **(not by generating NFA)** of the following regular expression:

 $L=(a|b)^*ab$ [(CO2)(CO1) (Understand/LOCQ)]

6 + 6 = 12

- 3. (a) What language does the regular expression (0|1)*0(0|1)(0|1) generate? [(CO2)(Remember/LOCQ)]
 - (b) Consider the context free grammar: S -> SS+ | SS* | a Show how the string aa+a* can be generated by this grammar and construct a parse tree for this string. [(CO3) (Understand/LOCQ)]
 - (c) What is the front end and back end of a compiler? [(CO4) (Analyse/IOCQ)]

3 + (3 + 3) + 3 = 12

Group – C

4. (a) S → 1AB | ∈ {∈ represents NULL} A → 1AC | 0C B → 0S C → 1 Test whether the given grammar is LL(1) or not [(CO3)(Remember/LOCQ)(Analyse/IOCQ)(Apply/IOCQ)]
(b) Is it true that LR(k + 1) is more powerful than the LR (k)? Justify your answer. [(CO2, CO3)(Evaluate/HOCQ)]

(c) "A grammar containing left recursion cannot be LL(1), similarly a grammar containing right recursion cannot be LR(1)." Is this a correct statement? Explain clearly. [(CO2, CO3)(Evaluate/HOCQ)]

6 + 3 + 3 = 12

- Consider the grammar: 5. (a)
 - S -> AS | b
 - A -> SA | a
 - (i) Construct the SLR parsing table for this.
 - (ii) Show all moves of parsing for the input: abab [(CO4) (Understand/LOCQ)]
 - Eliminate left recursion from the following grammar: (b)

 $S \rightarrow Ab|b$

A -> AC|Sd|€ [(CO2) (Understand/LOCQ)]

(4+4)+4=12

Group - D

Consider the SDT shown below: 6. (a)

 $E \rightarrow TE1$

- $E1 \rightarrow +T \{print("+");\} E1 \mid \in$
- $T \rightarrow num \{ print("num.lex.val"); \}$

Now modify this SDT in such a way so that an LR parser can carry out the translation on an input "9 + 5 + 2". [(CO4)(Remember/LOCQ)]

Generate the three address code for the code snippet given below: (b) (i) i = 2 * n + k;

- (ii) Then implement the three address code in triples, and indirect-triples. [(CO3, CO4)(Remember/LOCQ)(Analyse/IOCQ)]

3 + (3 + 3 + 3) = 12

- 7. Divide the following code into basic blocks and draw the flow graph. (a)
 - 1. f=1;
 - 2. i=2;
 - 3. if $(i \ge x)$ goto (8)
 - 4. f=f*i;
 - 5. t1 = i+1;
 - 6. i=t1;

S

- 7. goto (3)
- 8. goto calling program. [(CO1) (Remember/LOCQ)]
- Consider the following SDT. If an LR parser carries out the translations on an (b) input string "aabbccdb", what is the output?

(c)

| b {print("c");} A -> bcA {print("d");} | cdS {print("e");} What is the significance of a flow graph?

[(CO3) (Understand/LOCQ)] [(CO1)(Analyze/IOCQ)] (3 + 2) + 5 + 2 = 12

Group – E

Explain the terms with example: 8. (a) (i) Register descriptor (ii) Address descriptor. [(CO4) (Remember/LOCQ)] Translate the following code into machine code and show the register and (b) address descriptors while the instructions are generated. Assume that two registers are available. (i) x = y + z(ii) w = p + y (iii) y = y + z(iv) p = w - x[(CO3) (Understand/LOCQ)] 4 + 8 = 129. (a) Can you optimize the given C code segment (do not forget to mention the code optimization technique that you have used):

i = 0; i = 0;while (i < n & & j < n) { x += 4 * j + a[i];y = a[i] - 4 * j;i++; i++; } [(CO5, CO6)(Analyse/IOCQ)(Evaluate/HOCQ)] Design the flow graph for the code snippet given below: (b) int fib(unsigned int n) { int f0 = 0, f1 = 1, f2, i; $if(n \le 1)$ return n; else { for(i = 2; $i \le n$; i + +) { f2 = f0 + f1;f0 = f1;f1 = f2;} return f2; } } [(CO6)(Understand/LOCQ)(Analyse/IOCQ)] 6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	70%	19%	11%

Course Outcome (CO):

After the completion of the course students will be able to

CO1: This course will enable a student to understand the major phases of compilation including the front- and backend. They are expected to have an overview of how a real life compiler works.

CO2: After completion of this course, the students are expected to develop knowledge of Lex and YAAC tools.

CO3: The students should be able to understand various necessary tasks related to compiler construction, like token identification, grammar writing, type conversion, and storage management.

CO4: Students will learn to generate intermediate codes and actual machine codes targeting a particular architecture.

CO5: Students should acquire a detailed idea regarding optimization of generated code across various phases of the compilation process.

CO6: After completion of this course, students should be able to apply various optimization techniques for dataflow analysis.

*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question

Department & Section	Submission link:
CSE - A	https://classroom.google.com/w/NDA1MjE1ODUzNjMy/tc/NDYzODM0OTA0MTY0
CSE - B	https://classroom.google.com/c/NDA1MzUzNzI5MzYw/a/NDYzODU1NDI4ODA2/details
CSE - C	https://classroom.google.com/w/MTIyNDM4MjA5OTg2/tc/NDYzODMxMjk1NjMw