B.TECH/ECE/8TH SEM/ECEN 4242/2021

COMPUTER ORGANIZATION (ECEN 4242)

Time Allotted : 3 hrs

Full Marks: 70

 $10 \times 1 = 10$

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following:
 - (i) Which one of the following types of semiconductor memory is used as the main memory in a computer?
 (a) SRAM
 (b) DRAM
 (c) PROM
 (d) Flash.
 - (ii) The use of which one of the following in a computer is justified by the principle of locality?
 - (a) DMA(b) Virtual memory(c) Software interrupt(d) Cache memory.
 - (iii) Which one the following best describes the organization of a symmetric multiple processor (SMP)?
 - (a) Single instruction, single data stream
 - (b) Single instruction, multiple data stream
 - (c) Multiple instruction, single data stream
 - (d) Multiple instruction, multiple data stream.
 - (iv) For transferring data from key board to the attached computer, which one of the following would be the preferred mode of transfer?
 - (a) Direct memory access (DMA) (b) Programmed I/O
 - (c) Hardware interrupt-driven I/O (d) Software interrupt-driven I/O
 - (v) Von Neumann computers belong to which one of the following classes of computers?
 (a) SIMD
 (b) MIMD
 (c) MISD
 (d) SISD.
 - (vi) Instruction pipelining improves CPU performance due to which one of the following reasons?
 - (a) Reduced memory access time
 - (b) Use of larger cache
 - (c) Efficient utilization of the processor hardware
 - (d) Use of additional functional units.

B.TECH/ECE/8TH SEM/ECEN 4242/2021

- (vii) Which one of the following is a major benefit of the Harvard architecture over the Von-Neumann architecture?
 - (a) Programs written using single-word instructions execute more quickly than multiword instructions
 - (b) Code and data share memory and increase program execution efficiency
 - (c) Interrupt latency time is very predictable because instructions execute in a single cycle
 - (d) Code and data can be loaded into the CPU simultaneously on separate buses.
- (viii) A processor performing fetch or decoding of different instruction during the execution of another instruction is called?
 - (a) Pipe-lining
 - (c) Parallel Computation

(b) Super-scaling

(b) External

(d) Software.

- (d) None of the mentioned.
- (ix) An instruction cycle refers to which one of the following?
 - (a) Fetching an instruction
 - (b) Clock cycle time
 - (c) Fetching, decoding, and executing an instruction
 - (d) Executing an instruction.
- (x) Which one of the following types of Interrupts can be caused by an executing program?
 - (a) Internal
 - (c) Hardware

Group – B

- 2. (a) Discuss in detail about the hardwired control unit with block diagram.
 - (b) Explain micro program sequencer with proper example?

8 + 4 = 12

- 3. (a) Describe the major categories of pipeline hazards?
 - (b) Define parallel processing and explain the Flynn's classification of computer with suitable diagram.

5 + 7 = 12

Group – C

- 4. (a) How does the size of a cache block affect the hit ratio?
 - (b) What are the characteristics of SMP and also mention the advantages of SMP organization over a uniprocessor organization?
 - (c) What do you mean by implicit and explicit multithreading?

2 + (2 + 4) + 4 = 12

5. (a) Define clusters and also discuss the design requirements of clusters?

ECEN 4242

B.TECH/ECE/8TH SEM/ECEN 4242/2021

(b) Explain branch prediction with the help of proper block diagram?

(2+4)+6=12

Group – D

- 6. (a) Discuss the approaches that are possible to solve the dynamic memory disambiguation problem?
 - (b) Explain in detail about the hardware performance issue?
 - (c) Write the difference between RISC and CISC processors?

3 + 6 + 3 = 12

- 7. (a) Elaborate in details about crossbar switch showing the block diagram of functional design of a crossbar switch connected to one memory module?
 - (b) Define multicore computer organization and also explain any one example of a heterogeneous multicore chip?

5 + (2 + 5) = 12

Group – E

- 8. (a) Discuss in details about Berkeley RISC I and also mention its basic addressing modes?
 - (b) Describe the data flow diagram of a Two-Stage RISC Pipelined Computer.

8 + 4 = 12

- 9. Write short notes on <u>any 3</u> of the following (4 marks each):- $(3 \times 4) = 12$
 - (i) Design of control unit.
 - (ii) Memory interleaving.
 - (iii) Non-uniform memory access.
 - (iv) Symmetric multiprocessors.
 - (v) 3-segment instruction pipeline.
 - (vi) One-stage of arithmetic logic shift unit.

Department & Section	Submission Link
ECE	https://classroom.google.com/w/MjgwMjY00DY2NDIy/tc/MzYwMTQyMDA4MjYz