SOLAR ENERGY ENGINEERING (REEN 5201)

Time Allotted : 3 hrs

Full Marks: 70

 $10 \times 1 = 10$

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

(i)	The statement that maximum wavelength of radiation is inversely proportional to the temperature is		
	(a) Stefan-Boltzmann law	(b) Plank's distribution law	
	(c) Kirchhoff's law of thermal radiation	(d) Wien's displacement law	
(ii)	The emissivity of a perfect black body		
	(a) is 1	(b) is 0	
	(c) depends of temperature	(d) is undefined	
(iii)	Hour angle at solar time 10 A.M is		
	(a) -30°	(b) 30°	
	(c) -60°	(d) 60°	
(iv)	The sunshine hour of a place on earth with latitude -75° on a day with declination angle -20° is		
	(a) 0	(b) 12	
	(c) 18	(d) 24	
(v)	At north pole on 21 st June the sunset hour angle is		
	(a) 0°	(b) 180°	
	(c) 90°	(d) 45°	
(vi)	vi) When a pentavalent impurity is added to a pure semiconductor, it bec		
	(a) an insulator	(b) an intrinsic semiconductor	
	(c) p-type semiconductor	(d) n-type semiconductor	
(vii)	The region where the electrons and holes diffused across the junction is called		
	(a) Depletion Junction	(b) Depletion region	
	(c) Depletion space	(d) Depletion boundary	
REEN 5201	1		

- Solar cells are made from bulk materials that are cut into wafer of _____ (viii) thickness.
 - (a) 120-180µm (b) 120-220µm (c) 180-220µm (d) 180-240µm
- _____ is one of the most important materials is also known as solar grade (ix) silicon.
 - (a) Crushed silicon
- (b) Crystalline silicon

(c) Powdered silicon

- (d) Silicon
- photo voltaic devices in the form of thin films. (x)
 - (a) Cadmium Telluride
- (b) Cadmium oxide

(c) Cadmium sulphide

- (d) Cadmium sulphate

Group – B

- What is Wien's displacement law? Starting from the Plank's Distribution law of 2. (a) black body radiation establish the relation of Wien's Displacement Law.
 - (b) It has been observed that when the sun is overhead the earth's surface on a clear day, the radiation received by the earth's surface is 1 kW/m² and an additional 0.3 kW/m^2 is absorbed by the earth's atmosphere. Assuming the sun to be a black body, determine the temperature of the sun. Data Give: dia of sun = 1.39×10^9 m, dia of earth = 12.6×10^7 m, distance between sun and earth = 1.5×10^{11} m.

8 + 4 = 12

- 3. (a) Why standard time is different from solar time of a place on earth. Determine the Indian standard time based on latitude 82.5°E of solar noon of New Delhi, India (28.6139° N, 77.2090° E) on 22nd December.
 - (b) What is monthly average daily extraterrestrial radiation on a horizontal surface? Determine the ratio of monthly average daily extraterrestrial radiation on a horizontal surface at New Delhi, India for the month of June to December. Given: Solar constant is 1350 W/m². Monthly mean day for June and December are 11th and 10th respectively.

6 + 6 = 12

Group – C

- Derive a steady state temperature distribution between tubes of a flat plate 4. (a) solar collector and determine an expression of collector efficiency factor.
 - (b) Estimate the tilt factor of a south facing collector with an angle of inclination 45° at Kolkata, India (22.5726° N, 88.3639° E) on 2:00 pm solar time 21st June.

7 + 5 = 12

5. What is concentration ratio of solar collector? Determine the maximum possible (a) concentration ratio of a concentrating solar collector.

(b) Calculate the heat removal factor, the useful heat gain for a cylindrical parabolic concentrator having 2.5 m width and 9 m length, the outside diameter of the absorber tube being 6.5 cm. The temperature of the fluid to be heated at the inlet is 16°C with a flow rate of 450 kg/h. The incident beam radiation is 700 W/m². The ambient temperature is 28°C. The optical properties are as given below:

P = 0.85, $(\tau \alpha)_b$ = 0.78, τ = 0.93, c_p = 1.256 kJ/kg°C, collector efficiency factor = 0.85, Heat loss coefficient = 7.0 W/m²°C

(2+4)+6=12

Group – D

- 6. (a) Define energy band gap of a material.
 - (b) Draw the circuit arrangement for evaluating *V*-*I* characteristics of p-n junction diode (a) in forward bias, (b) in reverse bias, (c) typical *V*-*I* characteristics of a silicon diode. Calculate the resistance of the silicon diode at I_D = 15 mA and (b) V_D = -10V.
 - (c) A silicon wafer is doped with 10¹⁶ arsenic atoms/cm³. Find the carrier concentrations and the Fermi level at room temperature (300K).

2 + (4 + 2) + 4 = 12

 (a) Using the mobility and diffusivity chart (Fig. 1) for Si at 300K as a function of impurity concentration, find the room temperature resistivity of an n-type silicon wafer doped with 10¹⁶ atoms/cm³ of phosphorus.

(b) Describe the generation and recombination processes. C, Si and Ge have same lattice structure. Why is C insulator while Si and Ge intrinsic semiconductors?

6 + (4 + 2) = 12

Group – E

- 8. (a) State two field failure modes for crystalline silicon based modules? What tests have been done if a module passes the IEC 61215?
 - (b) What failure modes does the bypass diode thermal test check?

(2+6)+4=12

- 9. (a) Describe the steps involved in the fabrication of PV modules using solar cells as starting material.
 - (b) State three main categories of solar cell degradation. Explain one type of failures observed under each category and its corresponding testing procedure.

6 + 6 = 12

Department & Section	Submission Link
RE	https://classroom.google.com/c/OTMxMTE2NjQ1NzZa/a/Mzc0NjI0OTQ0MjQ2/details