M.TECH/VLSI/2ND SEM/VLSI 5202/2021

VLSI DESIGN, TESTING AND VERIFICATION (VLSI 5202)

Time Allotted : 3 hrs.

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choos	se the correct alter	$10 \times 1 = 10$			
	(i)	The output of physi (a) Layout	cal design is (b) Mask	(c) RTL	(d) Circuit Design.	
	(ii)	A MOS device can be used as a resistor in (a) Linear Region (c) Sub-threshold condition		or in (b) Saturatio (d) Mask Re	(b) Saturation Region (d) Mask Region.	
	(iii)	Yield Y = 99% and I (a) 10000	Fault Coverage T : (b) 1000	= 90%, DPM (Defects Pe (c) 28,000	r Million) is (d) 50,000.	
	(iv)	Which among the fo (a) FPGA	ollowing has the h (b) CPLD	nighest gate integration ((c) PLD	capacity? (d) ASIC.	
	(v)	VHDL is a (a) Multi-threaded program (c) Single user program		(b) C like pro (d) Sequenti	(b) C like programming language (d) Sequential program.	
	(vi)	Minimum Number ((a) 2	of Transistors in ' (b) 4	TG XOR gate is (c) 6	(d) 10.	
	(vii)	In the VTC curve of the curve (dV _{out} /dV (a) +1	an inverter critic _{in}) is (b) -1	cal voltages are obtained (c) 0	, where the shape of (d) 0.25.	
	(viii)	Synthesis translates descriptions from (a) Physical to Behavioural (c) Behavioural to Structural		om (b) Structur (d) Structur	(b) Structural to Physical (d) Structural to Behavioural.	
	(ix)	Average wide delay is changing with Technology ad(a) Increasing(b)(c) Remaining same(d)			nt in following way ing ng and then decreasing.	
VLS	SI 5202	1				

M.TECH/VLSI/2ND SEM/VLSI 5202/2021

(x) The critical path for a design refers to(a) the path having maximum delay(c) the path with optimum delay

(b) the path with minimum delay(d) the path with no delay.

Group – B

- 2. (a) Explain briefly with schematic the operation of a CMOS inverter.
 - (b) Design a one bit Full Adder, showing the transistor level schematic circuit and also the gate level schematic.

6 + 6 = 12

- 3. (a) Explain write '1' followed by read '1' operation in 1-Transistor DRAM Circuit using circuit diagram and timing waveforms.
 - (b) Explain sizing criteria of 6 Transistor SRAM cell.

6 + 6 = 12

Group – C

- 4. (a) Explain Static Timing Analysis.
 - (b) Explain PVT corner and worst case design criteria.

6 + 6 = 12

- 5. (a) Briefly explain interconnect capacitance, and resistance estimation and calculation of interconnect delay techniques.
 - (b) Why driver side of a wire needs to be low resistance and receiver side of the wire needs to be low capacitance, explain using Elmore Delay model.

6 + 6 = 12

Group – D

- 6. (a) In a flip flop based sequential circuit, Cycle Time = 200ps, Setup Time = 25ps, Clock-Skew = 20ps, Combinational Delay = 60ps, Clock to Out Delay of Flop = 40ps. Hold Time = 40ps. What is setup margin and hold margin for the circuit?
 - (b) What is clock skew and what are the sources of clock skew?

6 + 6 = 12

- 7. (a) What is best circuit scheme to create 8 to 256 bit decoder, explain with diagram.
 - (b) For a Memory Block of 256Kb Memory bits and 32 Data bits, Explain how many row address bits and how many column address bits are needed.

6 + 6 = 12

Group – E

8. (a) What is input test pattern to detect Stuck-at-1 fault at the Output of a 2 input NAND gate?
 VLSI 5202 2

M.TECH/VLSI/2ND SEM/VLSI 5202/2021

(b) Explain D-Algorithm using an example.

6 + 6 = 12

- 9. (a) Explain how Level Sensitive Scan Design Flip Flop (LSSD-SFF) works using Circuit diagram.
 - (b) Using path sensitization, generate primary input test patterns for S-a-0 fault at line d in the combinational circuit given below.

 Department & Section
 Submission Link

 VLSI
 https://classroom.google.com/c/MzExOTQ2OTQyNjg0/a/MzcxNjUwMTI0MjU3/details