THEORY OF COMPUTATION (CSEN 5234)

Time Allotted : 3 hrs.

1.

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

Choos	e the correct alte	$10 \times 1 = 10$		
(i)	For a Mealy ma following will be (a) n	the chine, if the input the length of the out $(b) n + 1$	string is of length put string? (c) n – 1	n, then, which of the (d) None of these.
(ii)	Given the langua 1) abaabaaabaa (a) 1, 2 and 3	ge L = {ab, aa, baa}, w 2) aaaabaaaa 3 (b) 2, 3 and 4	which of the following baaaaabaaaab (c) 1, 2 and 4	g strings are in L*? 4) baaaaabaa (d) 1, 3 and 4
(iii)	The production rules, S→aA, A→aB a, B→b represent a(a) regular grammar(b) CFG but not regular(c) neither CFG nor Regular(d) regular grammar but not CFC			
(iv)	Which of the following is the regular expression representing all strings on $\Sigma = \{a, b\}$, starting with 'ab' and ending with 'bba'(b) $ab(ab)^*bba$ (a) aba^*b^*bba (b) $ab(ab)^*bba$ (c) $ab(a+b)^*bba$ (d) both (b) and (c) are correct			
(v)	Which one of the pushdown acception (a) $\{ 0^m 1^n 0^m \mid 1 \le (c) \} \{ 0^m 1^n 0^m 1^n \mid 1 \}$	he following languator (dpda)? $m, 1 \le n$ }; $s \le m, 1 \le n$ };	ges can be accepte (b) { 0 ^m 1 ⁿ (d) { 0 ^m 1 ⁿ	ed by a deterministic $m^{0m} 1 \le m $; $m^{2^{2m}} 1 \le m $ }.
(vi)	If P & Q be two regular expressions over Σ , then the equation R = Q+RP will have a unique solution R = QP* if (where λ is the empty string) (a) P contains λ (b) P does not contain λ (c) Q does not contain λ (d) None of these.			
(vii)	Consider the language $L = \{ 0^n 1^n 0^m 1^m n > 0, m > 0 \}$ on the input alphabet $\{ 0, 1 \}$. Which one of the following statements is true? (a) L can be recognized by a suitably designed deterministic finite state acceptor (dfsa).			

 $10 \times 1 - 10$

Full Marks : 70

- (b) L can be recognized by a suitably designed deterministic pushdown acceptor (dpda) but not by any dfsa.
- (c) L can be recognized by a suitably designed non-deterministic pushdown acceptor (ndpda) but not by any dpda.
- (d) L can be recognized by a suitably designed Turing Machine but not by any ndpda.
- (viii) L_1 and L_2 are two Type 3 (regular) languages. Let the language L consist of all strings that are in L_2 but not in L_1 . Then
 - (a) L is a Type 3 language;
 - (b) L is a Type 2 language but not necessarily a Type 3 language;
 - (c) L is a Type 1 language but not necessarily a Type 2 language;
 - (d) L is a Type 0 language but not necessarily a Type 1 language.
- (ix) Which of the following problems is undecidable?
 - (a) Deciding if a given CFG is ambiguous
 - (b) Deciding if a given string is generated by a given CFG
 - (c) Deciding if a language generated by a given CFG is empty
 - (d) Deciding if a language generated by a given CFG is finite.
- (x) A machine M has been designed that, given a positive integer n as input, accepts n if and only if n is a prime number. Then which one of the following alternatives is false?
 - (a) M cannot be a non-deterministic finite state acceptor (ndfsa)
 - (b) M cannot be a deterministic pushdown acceptor (dpda)
 - (c) M cannot be a non-deterministic pushdown acceptor (ndpda)
 - (d) M cannot be a Turing machine.

Group – B

- 2. (a) Design a deterministic finite state acceptor (dfsa) M that accepts only those strings on the alphabet {0, 1} that do *not* begin with 01 *and* do *not* end with 10. Show both the state table and the state transition diagram of M. Briefly explain how M accepts the string 101 but fails to accept the string 010.
 - (b) Convert the following Non-Deterministic Finite Automata (NFA) to Deterministic Finite Automata (DFA).

(4+2)+6=12

3. (a) Convert the following Mealy machine into equivalent Moore machine.

CSEN 5234

(b) Construct a deterministic finite state acceptor (dfsa) M on the input alphabet {0, 1} that accepts a string α if and only if α is *not* contained in the regular expression 0*1*01.

6 + 6 = 12

Group – C

4. (a) Find the regular expression for the following DFA.

- (b) What will be the regular expression of the Finite State Automata (FSA) that will accept all the binary strings (i.e. Σ : {0, 1}) that start with even number of zeros and ending with odd number of ones?
- (c) Construct a left-linear grammar for the following language: $L = \{a^nb^m | n \ge 2, m \ge 3\}$

6 + 4 + 2 = 12

- 5. (a) Consider the following languages on the alphabet $\sum = \{a, b, c\}$. Give regular expressions for each of them.
 - (i) any non-empty string on \sum
 - (ii) any string that does not contain 'a'
 - (iii) any string that contains at least one 'a'.
 - (b) Describe in words the strings accepted by the deterministic finite state acceptor (dfsa) shown below. The start (initial) state is A and the goal (final) state is D. Also express the set of accepted strings in the form of a regular expression.

	0	1
Α	В	Α
В	С	С
С	D	D
D	С	D

 $(2 \times 3) + (4 + 2) = 12$

Group – D

- 6. (a) Show that there does not exist any PDA that will accept the language, L: $a^n | n$ is a prime number
 - (b) The language L_3 is defined on the alphabet $\sum = \{(i, j), i\}$ and consists of all sequences of well-formed (*i.e.*, balanced) parentheses and braces. Thus the

sequences '(()()()', '(())()()', '{()}', '((){()}')' are in L_3 , but the sequences '())(()', '{(})' are not in L_3 .

Give a Type 2 or a context-free grammar that generates the set $L_{3.}$

6 + 6 = 12

7. (a) Simplify the following CFG as much as possible

 $S \rightarrow DAa$

- $A \rightarrow b$
- $B \rightarrow a$
- $D \rightarrow \epsilon$ (ϵ represents NULL).
- (b) Explain acceptance by empty stack and acceptance by final state for a PDA.
- (c) Design a pushdown acceptor (pda) M to accept the following context-free language L on the input alphabet { 0,1 }: L = { α | the string α has an equal number of 0's and 1's }. Explain how M accepts the string 001011110100.

4 + 2 + 6 = 12

Group – E

- 8. (a) Design a Turing machine that will accept the language L, such that $\{L: a^n bc^n | n > 0\}$ over the input alphabets (i.e. $\Sigma: \{a, b, c\}$).
 - (b) There exists a Turing machine M that accepts the language L. Can we infer that L is a recursive language? Justify your answer.

8 + 4 = 12

- 9. (a) Design a Turing machine that generates one's complement over any binary input string (i.e. $\Sigma = \{0, 1\}$).
 - (b) Write short note on the following topics
 - (i) Turing Halting Problem.
 - (ii) Multi-tape Turing machine.

4 + (4 + 4) = 12

Department & Section	Submission Link	
CSE	https://classroom.google.com/w/MzEyMzA10Dk2NjU4/tc/Mzc0MTMwMDYyNjE5	