B.TECH/ECE/6TH SEM/ECEN 3201 (BACKLOG)/2021

DIGITAL VLSI DESIGN (ECEN 3201)

Time Allotted : 3 hrs

1.

ECEN 3201

Full Marks: 70

 $10 \times 1 = 10$

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

Choose the correct alternative for the following:

	(1)				
	(i)	According to Moore's La (a) 16 Months (c) 24 Months	aw, Number of Transisto	or per chip gets doub (b) 18 Months (d) 30 Months.	led in
	(ii)	Latest Integration Tech (a) LSI	nology is (b) VLSI	(c) ULSI	(d) GSI.
	(iii)	Value of "Lambda" in 18 (a) 130nm	30nm Process Node is (b) 65nm	(c) 90nm	(d) 100nm.
	(iv)	BDD is used in (a) High Level Synthesis (c) Floorplan	5	(b) Logic Synthesis (d) Routing.	
	(v)	Minimum Number of Tr (a) 10	cansistors in CMOS logic (b) 12	Y = AB + CD is (c) 14	(d) 8.
	(vi)	LUT belongs to below ty (a) Gate Array	/pes of Circuits (b) CPLD	(c) PLA	(d) FPGA.
	(vii)	KL Algorithm is related (a) Routing (c) Logic Synthesis	to	(b) Partitioning (d) High Level Syntl	hesis.
	(viii)	Most Noise Immune Log (a) NMOS (c) Dynamic	gic Family is	(b) Pseudo NMOS (d) CMOS.	
	(ix)	Most Manual Effort is needed in below VLSI Methodology (a) FPGA (b) Gate Array (c) Std Cell Based Semi Custom (d) Full Custom.			
СE	N 3201		1		

B.TECH/ECE/6TH SEM/ECEN 3201(BACKLOG)/2021

(x) 0.7 Technology Scaling enables Layout area scaling of
(a) 0.7 (b) 0.5 (c) 0.45 (d) 0.65.

Group - B

- 2. (a) What are differences between Full Custom Design and Std Cell based Semi Custom Design?
 - (b) Draw Circuit Diagram of 4 input NOR gate using CMOS Logic.
 - (c) Draw Circuit Diagram of 2 input XOR gate using CMOS Transmission Gate (TG).

4 + 4 + 4 = 12

- 3. (a) Draw VTC Curve for CMOS Inverter and show various Region
 - (b) Draw Domino Implementation of 8 input OR gate
 - (c) Implement f = A.B Boolean logic using Transmission Gate.

3 + 4 + 5 = 12

Group – C

- 4. (a) Draw Circuit Diagram of a Level-1 D-Latch using CMOS Transmission Gate (TG).
 - (b) Draw Circuit Diagram of a Positive Edge Triggered D-Flip Flop using D-Latch.
 - (c) Explain Euler Path solution of a CMOS gate which represents function f = (AB+C+D) ! (! Means Bar) and draw Stick Diagram of the same CMOS gate based on Euler Path Solution.

3 + 3 + (3 + 3) = 12

- 5. (a) Draw Layout of CMOS inverter using Standard Cell Layout Topology and show all the layers.
 - (b) What is the difference between "Micron based Design Rule" and "Lambda Based Design Rule"?
 - (c) Draw schematic and Stick Diagram of 3 input NAND gate.

4 + 3 + 5 = 12

Group – D

- 6. (a) Write Verilog Description of a Level-1 D-Flipflop.
 - (b) Write Verilog Description of a 3 to 8 Decoder.
 - (c) Write Verilog Description of a 2:1 MUX.

4 + 4 + 4 = 12

- 7. Write short notes on below topic
 - (i) FPGA

ECEN 3201

B.TECH/ECE/6TH SEM/ECEN 3201(BACKLOG)/2021

(ii) Floorplan

(iii) Routing.

4 + 4 + 4 = 12

Group – E

- 8. (a) What is input test pattern to detect Stuck-at-1 fault at the Output of a 2 input NAND gate ?
 - (b) Explain D-Algorithm using an example.

6 + 6 = 12

- 9. (a) Draw Circuit diagram of Scan Flip Flop and explain how it works.
 - (b) Draw block diagram of Scan Design/Structure and explain its operation.

6 + 6 = 12

Department & Section	Submission Link		
ECE	https://classroom.google.com/u/0/w/MzY0NjE3MDkyMjYy/tc/MzY0NjE3MDk4NjA0		