B.TECH/ECE/6TH SEM/ECEN 3202 (BACKLOG)/2021

DIGITAL SIGNAL PROCESSING & APPLICATIONS (ECEN 3202)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:					$10 \times 1 = 10$
	(i)	The unit step rest $\delta(n-1)$ is	sponse of an LTI syst	em with i	mpulse re	sponse $h(n) = \delta(n)$
		(a) δ(n-1)	(b) u(n-1)	([c) δ(n)	(d) u(n)
	(ii)	Energy of given s (a) 0	ignal x(n) = $e^{j(\pi/2 n + \pi/8)}$ (b) 1	ⁱ⁾ is	(c) n	(d) a
	(iii)	A system characterized by the system function I (a) low pass filter (c) band pass filter			H(z) = ½ (1- z ⁻¹) is a (b) high pass filter (d) band stop filter.	
	(iv)	 Direct evaluation of N point DFT require (a) N² multiplication and N² addition (b) N(N-1) multiplication and N² addition (c) N multiplication and N addition (d) N² multiplication and N(N-1) addition. 				
	(v)	The ROC of Z-trai (a) z < 2	nsform of the signal 2ª (b) 2< z <3	ⁿ u(n) – 3 ⁿ (c) z :	u(-n-1) is > 3	(d) none of these.
	(vi)	Overlap save method used to determine (a) Circular convolution (c) DFT			(b) linear convolution (d) FFT.	
	(vii)	The mapping from analog to digital domain in in (a) One to many (c) Many to many			npulse invariant method is (b) One to one (d) Many to one.	
	(viii)	Down sampler is usually preceded by a LPF. This combination is(a) Rational sampling rate converter(b) Interpolato(c) Band pass filter(d) Decimator.				on is called lator tor.
ECI	EN 3202		1			

B.TECH/ECE/6TH SEM/ECEN 3202(BACKLOG)/2021

- (ix) An FIR filter is always stable because of all of its poles are
 (a) at the origin
 (b) at the infinity
 (c) at the ROC
 (d) inside the unit circle.
- (x) As the length of window increases in designing a FIR filter, the width of main lobe

 (a) Does not change
 (b) Zero
 (c) Decreases
 (d) Increase.

Group – B

- 2. (a) Two discrete time signal x(n) and h(n) are both non zero only for n = 0,1,2 and are zero otherwise. It is given that x(0) = 1, x(1) = 2, x(2) = 1 and h(0) = 1. If y(n) be the linear convolution of x(n) and h(n), then find the value of expression 10 y(3) + y(4) where y(1) = 3 and y(2) = 4.
 - (b) Find the impulse response of the system described by difference equation y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) using z-transform.
 - (c) Determine the z-transform of signal $x(n) = n^2 u(n)$.

5 + 4 + 3 = 12

- 3. (a) Find the inverse z-transformation of X(z) = z(z+1)/(z-1)(z-3) 1 < |z| < 3 using
 (i) Partial fraction method
 (ii) Convolution method.
 - (b) Find Inverse z-transformation of $X(z) = log(1-az^{-1})$ using differentiation property.
 - (c) Why the system will be stable if all poles will be lie inside unit circle?

6 + 3 + 3 = 12

Group – C

- 4. (a) Prove the circular time shifting property of DFT $x((n-m)) = X(K) e^{-j2\pi km/N}$.
 - (b) Using linear convolution, find y(n) = x(n) * h(n) for the sequence $x(n) = \{2, -1, 0, 1, 2, 1, 0, 1, 3, 1\}$ and $h(n) = \{1, 2, -1\}$ and compare the result by solving problem using overlap save method for N = 5.

5 + 7 = 12

- 5. (a) Determine the output response y(n) if $h(n) = \{3,2,4\}$ and $x(n) = \{1,1,2,4\}$ by Circular convolution using zero padding to obtain linear convolution.
 - (b) Compute the DFT of sequence $x(n) = cos(n\pi / 2)$ using radix 2 DIT-FFT and radix 2 DIF-FFT algorithm where N=4.
 - (c) Why it is not possible to take the DFT of sequence having infinite length?

4 + 6 + 2 = 12

B.TECH/ECE/6TH SEM/ECEN 3202(BACKLOG)/2021

Group – D

- 6. (a) What are the advantages of Bilinear transformation method over impulse invariance method.
 - (b) For the given specifications design an Analog Butterworth filter. $0.9 \le |H(j\Omega)| \le 1$ $0 \le \Omega \le 0.2\pi$

$$|H(j\Omega)| \le 0.2$$
 $0.4 \pi \le \Omega \le \pi$

(c) An LTI system with unit sample response $h(n) = 5\delta(n) - 7\delta(n-1) + 7\delta(n-3) - 5\delta(n-4)$ is a response of LPF,HPF or BPF and justify it.

3 + 6 + 3 = 12

- 7. (a) What is warping effect? What is its effect on magnitude and phase response?
 - (b) Design a ideal low pass FIR filter with frequency response using Fourier series method

 $\begin{array}{ll} H_d(e^{jw}) = 1 & \mbox{for } -\pi/2 \leq w \leq \pi/2 \\ &= 0 & \pi/2 \leq w \leq \pi \\ \mbox{Find the value of } h(n) \mbox{ for } N=11 \mbox{and also } H(z) \ . \end{array}$

4 + 8 = 12

Group – E

- 8. (a) Obtain the direct form II and parallel form realization for the system y(n) = -0.1 y(n-1) + 0.2 y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2)
 - (b) Show that the up sampler and down sampler are time variant systems.
 - (c) What are the advantage of multirate signal processing over single rate processing

6 + 3 + 3 = 12

- 9. (a) With the help of neat diagram describe the memory architecture of TMS320C54X and give the comparison between DSP processor and general purpose microprocessor.
 - (b) What is the need for anti imaging filter prior to down sampling and anti imaging filter after up sampling a signal?

8 + 4 = 12

Department & Section	Submission Link			
ECE	https://classroom.google.com/u/0/w/MjI1NDI3NDg3Nzgy/tc/MzY0NTM40Dk1MzIz			