B.TECH/EE/6TH SEM/ELEC 3202(BACKLOG)/2021

POWER ELECTRONICS (ELEC 3202)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the foll	owing:
--	--------

 $10 \times 1 = 10$

- (i) di/dt protection of SCR is achieved by connecting
 - (a) Inductor in series with SCR
 - (b) Capacitor in series with SCR
 - (c) Resistor and capacitor (RC) across SCR
 - (d) Resistor and capacitor (RC) in series with SCR.
- (ii) In R-triggering circuit of SCR, the maximum firing angle can be
 (a) 90°
 (b) 45°
 (c) 135°
 (d) 180°
- (iii) Power electronics device with poor turn off gain is
 (a) GTO
 (b) SCR
 (c) Power MOSFET
 (d) Power BJT
- (iv) For a 3φ half bridge converter is connected to a 50Hz grid the fundamental ripple frequency of output voltage will be
 (a) 50Hz
 (b) 100Hz
 (c) 150Hz
 (c) 300Hz
- (v) For a buck-boost converter switching frequency is 50kHz, input voltage 12V, and output voltage 24V load current of 1A. Calculate the average input current?
 (a) 2A
 (b) 3A
 (c) 4A
 (d) 2.5A

(vi) What is the value of duty cycle for per unit ripple current to be maximum? (a) 0.3 (b) 0.75

- (c) 0.6 (d) 0.5
- (vii) The input output voltage relationship for a boost chopper is (a) Vo=Vs (b) Vo= α Vs (c) Vo=Vs/(1- α) (d) Vo= α Vs/(1- α)

B.TECH/EE/6TH SEM/ELEC 3202(BACKLOG)/2021

- (viii) A voltage source inverter is normally employed when
 - (a) source inductance is large and load inductance is small
 - (b) source inductance is small and load inductance is large
 - (c) both source and load inductances are small
 - (d) both source and load inductances are large

When the conduction angle for a single pulse width modulation scheme is 120° (ix) then the rms fundamental component of output voltage is (a) 0.78V

(c) 0.90V

(b) 1.10V (d) 1.27V

- The use of high-speed circuit breakers (x)
 - (a) reduces the short circuit current
- (b) improves system stability
- (c) decreases system stability
- (d) increases the short circuit current.

Group – B

- 2. Explain the switching characteristics of thyristor with necessary waveforms. (a)
 - (b) Draw and explain V-I characteristics of TRIAC.
 - (c) Draw and explain gate triggering circuit of SCR using UJT.

5 + 4 + 3 = 12

- 3. (a) Explain resonant pulse commutation of SCR with necessary waveforms.
 - Explain reverse recovery characteristics of power diode. (b)
 - (c) Compare power MOSFET, BJT and IGBT.
 - (d) What is string efficiency?

6 + 2 + 3 + 1 = 12

Group - C

- Explain the operation of half wave controlled rectifier with R-L load with 4. (a) necessary waveforms.
 - Derive the equation of output RMS voltage for the above mentioned case. (b)
 - (c) Consider a boost converter with input voltage 5V. The average output voltage is 20V and the average load current is 0.5A. The switching frequency is 25 kHz with $L=250\mu$ H and $C=420\mu$ F. Determine:
 - (i) Duty cycle.
 - (ii) The ripple current of inductor.
 - (iii) The peak inductor current.
 - (iv) The ripple voltage of capacitor.

5 + 3 + 4 = 12

Explain the operation of a buck chopper with necessary equations. Also draw 5. (a) the inductor voltage, inductor current waveforms.

B.TECH/EE/6TH SEM/ELEC 3202(BACKLOG)/2021

(b) Explain briefly the operation of class C chopper along with necessary waveforms.

5 + 7 = 12

Group – D

6. Compare $180^{\circ} \& 120^{\circ}$ mode of operation for three phase VSI.

12

- 7. (a) Explain the operation of single phase full bridge VSI with R-L load.
 - (b) A single phase full bridge inverter is supplying power to a resistive load of 20Ω and is operated from a battery of 96V. Calculate:
 - (i) RMS value of the output voltage by direct integration method and harmonic summation method.
 - (ii) Fundamental component of the output voltage.
 - (iii) First 5 harmonics of the output voltage.
 - (iv) Fundamental power consumed by the load.
 - (v) RMS power consumed by the load.
 - (vi) Switch Ratings.

5 + 7 = 12

Group – E

- 8. (a) Explain the operation of single phase half wave ac voltage controller for R load along with necessary waveforms.
 - (b) Derive the average and RMS values of output voltage for the above case.
 - (c) Write any two typical application of AC Voltage controller.

5 + 5 + 2 = 12

- 9. (a) Explain in detail the operation of a single-phase to single-phase step up bridge type cycloconverter.
 - (b) Write briefly on different types of SMPS.

5 + 7 = 12

Department & Section	Submission Link
EE	https://classroom.google.com/c/MjI2MjE5NDQ2MDMy/a/MzY0MzE0Njc3MjM1/details