ECEN 2203

B.TECH/ECE/4TH SEM/ECEN 2203/2021

EM THEORY & TRANSMISSION LINES (ECEN 2203)

Time Allotted : 3 hrs

1.

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

Choo	se the correct altern	native for the followi	ng:	$10 \times 1 = 10$
(i)	What is the major lossless dielectric, (a) Attenuation con (c) Constitutive pa	r factor for determini a lossy dielectric or a g nstant rameters (σ, μ, ε)	ng whether a medium good conductor? (b) Loss tangen (d) Perfect Cond	in free space, a t luctor.
(ii)	Poynting vector giv (a) Rate of energy (c) Intensity of elec	cor gives ergy flow (b) Direction of polariz of electric field (d) Intensity of magnet		polarization magnetic field.
(iii)	A uniform plane w (a) \vec{E} and \vec{H} are per (c) \vec{E} and \vec{H} are par	vave is one in which: erpendicular (b) \vec{E} and \vec{H} lies in a plane arallel (d) \vec{E} and \vec{H} are 45° out of phase.		
(iv)	Which one of the following conditions transmission line? (a) $R = 0, G = 0$ (c) $R \gg \omega L, G \gg \omega C$		will not guarantee a distortion less (b) $LG = RC$ (d) $R \ll \omega L, G \ll \omega C$	
(v)	If a line is termina Ratio) is (a) 0	ated in an open circu (b) 1	it, then VSWR (Voltage (c)∞	e Standing Wave (d) –1
(vi)	The characteristics impedance of a lossless transmission line is given by (a) $Z_0 = \sqrt{LC}$ (b) $Z_0 = \sqrt{L/C}$ (c) $Z_0 = \sqrt{CG/L}$ (d) $Z_0 = LC$			given by
(vii)	The direction of wave vector represents the direction of(a) power(b) electric field(c) magnetic field(d) all of them.		l	

1

Full Marks: 70

B.TECH/ECE/4TH SEM/ECEN 2203/2021

- (viii) A lossy, isotropic and charge free medium means (a) $\sigma = 0, \epsilon$ is not constant and $\rho = 0$ (b) $\sigma = 0, \epsilon$ is constant and $\rho = 0$ (c) $\sigma \neq 0, \epsilon$ is not constant and $\rho = 0$ (d) $\sigma \neq 0, \epsilon$ is constant and $\rho = 0$
- (ix) The radiation pattern of Pyramidal Horn antenna is
 (a) Omni directional
 (b) Bidirectional
 (c) Isotropic
 (d) Multidirectional.
- (x) In a dielectric medium, electromagnetic wave with different wavelength experiences different velocity due to

 (a) diffraction
 (b) refraction
 (c) dispersion
 (d) all of the above.

Group – B

- 2. (a) What do you mean by displacement current? Derive modified amperes circuital law.
 - (b) In a medium characterized by $\sigma=0$, $\mu-\mu_0$, $\epsilon=4\epsilon_0$ and $E = 20\sin(10^8t-\beta z)a_y$ V/m calculate β and H.

6 + 6 = 12

- 3. (a) Derive expression for the continuity equation. Derive the modified Ampere's circuit law. What is the origin of the 'displacement current'?
 - (b) A parallel-plate capacitor with plate area of 5 cm² and plate separation of 3 mm has a voltage $50 \sin 10^3 t$ V applied to its plates. Calculate the displacement current assuming $\epsilon = 2\epsilon_0$.

(2+3+1)+6=12

Group – C

- 4. (a) Write the Maxwell's equations. Hence derive the electromagnetic wave equation for lossy, isotropic, homogeneous and charge free medium. Show that $\beta^2 \alpha^2 = (nk_0)^2$, where α, β, n and k_0 represent the attenuation constant, phase constant, refractive index and free-space wave number, respectively.
 - (b) A wave, within a nonmagnetic medium with $\epsilon_r = 3\epsilon_0$, is represented as $\mathbf{E} = 200e^{-0.05z} \cos(160 \times 10^6 \pi t \beta z) \,\hat{\mathbf{a}}_{\mathbf{x}}$. Determine
 - (i) refractive index of the medium,
 - (ii) intrinsic impedance of the medium,
 - (iii) phase constant β , and
 - (iv) the corresponding magnetic field.

(1+3+2) + (1+1+1+3) = 12

5. (a) Write short note on(i) Linear polarization (ii) circular polarization and (iii) elliptical polarization.

ECEN 2203

B.TECH/ECE/4TH SEM/ECEN 2203/2021

(b) Differentiate between dynamic and dc resistance of a conductor. Analyze wave propagation in lossy dielectric.

6 + 6 = 12

Group – D

- 6. (a) Show that a one eighth wavelength transmission line can be used to transform any load impedance to the characteristic impedance.
 - (b) The measurement on a distortion less transmission line at 1000 Hz gave the following results. $Z_0 = 60 \Omega$ $\alpha = 0.01$ Neper/m and $\beta = 0.035$ rad/m. Calculate the primary constants (R, L, G, and C) and phase velocity on the line. 5 + 7 = 12

7. (a) A lossy transmission line having length *l* characteristics impedance Z_0 and propagation constant γ is terminated at a load impedance Z_L . Show that the input impedance can be expressed as $Z_{in} = Z_0 \left[\frac{Z_L + Z_0 \tanh \gamma l}{Z_0 + Z_l \tanh \gamma l} \right]$.

(b) Derive the condition for distortion-less transmission line.

8 + 4 = 12

Group – E

- 8. (a) What is an antenna array? Why is it used instead of an antenna? Differentiate between broadside and end fire array.
 - (b) The field pattern of an omni-directional antenna in elevation plane is defined as: $F(\theta) = 1 \text{ for } 45^\circ \le \theta \le 135^\circ$

= 0 for all others values of θ .

Find the directivity of this omni-directional antenna.

(2+2+3)+5=12

- 9. (a) A magnetic field strength of 5μ A/m is required at a point on $\theta = \frac{\pi}{2}$, which is 2 km from an antenna in air. Neglecting ohmic loss, how much power must the antenna transmit if it is a Hertzian dipole of length $\lambda/25$?
 - (b) Show that the directive gain of a Hertzian dipole is $G(\theta, \phi) = 1.5 \sin^2 \theta$.

6 + 6 = 12

Department & Section	Submission Link
ECE Sec A	https://classroom.google.com/w/MzExNjAyNzIwNDY2/tc/MzcxNjk5Nzc10TI5
ECE Sec B	https://classroom.google.com/w/MzExNTkwMjY10DQy/tc/Mzc0Mjg2Mzc2MTQ2
ECE Sec C	https://classroom.google.com/u/2/w/MzEyNDA40TM2MTAz/tc/Mzc0MjU3NDkz0TUz
BACKLOG	https://classroom.google.com/c/Mzc0Mjg2MDU3MjQ4?cjc=2nrxstp