B.TECH/ECE/4TH SEM/ECEN 2202/2021

DIGITAL SYSTEMS DESIGN (ECEN 2202)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:				$10 \times 1 = 10$	
	(i)	Simplified form of Boo (a) 1	lean expression ($A + \overline{B} + \overline{B}$ (b) 0	+ ĀB)C is (c) C	(d) <i>C</i> ̄.	
	(ii)	Which of the following (a) XS-3 code (c) Hamming code	is a self-complementing	code? (b) Gray code (d) Cyclic code.		
	(iii)	The simplified form of (a) X + Y + Z	the Boolean expression (b) XY + YZ	(X + Y + XY)(X + Z) (c) X + YZ	is (d) XZ + Y.	
	(iv)	The code used for labe (a) 8-4-2-1 binary (c) gray	lling the cells of a K-Map	is (b) hexadecimal (d) octal.		
	(v)	(11011) ₂ in BCD code i (a) 00011011 (c) 11011001	S	(b) 00100111 (d) 01101100		
	(vi)	The minimum number of 2-input NAND/NOR gates required to realize a half-				
		adder is (a) 3	(b) 4	(c) 5	(d) 6.	
	(vii)	 A 32:1 MUX can be designed (a) two 16:1 MUXs and one two input OR gate (b) two 16:1 MUXs and one two input AND gate (c) two 16:1 MUXs and two two-input OR gate (d) two 16:1 MUXs only. 				
	(viii)	A flip-flop can store (a) one bit of data (c) three bits of data		(b) two bits of da (d) any number o	ta f bits of data.	
ECH	EN 2202		1			

B.TECH/ECE/4TH SEM/ECEN 2202/2021

- (ix) How many stages a 6-bit ripple counter can have? (a) 6 (b) 12 (c) 32 (d) 64.
- How many full adders are required to construct a *m* bit parallel adder? (x) (b) m-1 (c) m (d) m+1. (a) m/2

Group - B

- 2. (a) Simplify the Boolean function by using K-map: $F=\sum m(0, 1, 2, 3, 5, 7, 8, 9, 10, 12, 13)$ and implement the real minimal expression in universal logic.
 - (b) (i) Add 25+13 in the 8421 BCD code. (ii) Convert the binary 1001 to the Gray code.

(6+2) + (2+2) = 12

Simplify the Boolean function using tabular method: 3. (a) $f(A, B, C, D) = \sum m(1, 2, 3, 5, 6, 11, 12) + \sum d(7, 8, 10, 14)$

(b) Convert $(78)_{10}$ to gray code. Convert $(546.77)_8$ to common binary code.

8 + (2 + 2) = 12

Group - C

- Design a 4-to-16 Decoder using Two 3-to-8 Decoders. 4. (a)
 - (b) Implement the following function using 4:1 MUX: $F(A, B, C) = \sum m(1, 3, 5, 6)$

6 + 6 = 12

- 5. Design a Half-subtractor using only NAND gates. (a)
 - (b) What are ROM and RAM? What are the basic differences between EPROM and **EEROM?**
 - (c) Design a 16:1 multiplexer using 8:1 multiplexers and necessary logic gates.

4 + (2 + 2) + 4 = 12

Group - D

- Draw the circuit diagram of a positive edge-triggered JK flip-flop and explain its 6. (a) operation with the help of a truth table.
 - (b) With neat diagrams explain the working of the following types of shift registers. (i) serial-in parallel-out (ii) parallel-in serial-out.

6 + (3 + 3) = 12

7. What is the difference between asynchronous and synchronous counters? (a)

B.TECH/ECE/4TH SEM/ECEN 2202/2021

(b) What are the advantages of a J-K flip-flop over an S-R flip-flop? Realize a D flip flop using T flip flops.

7 + 5 = 12

Group – **E**

- 8. (a) Explain the operation of a Dual slope ADC with proper circuit diagram. What is the advantage of R-2R ladder type DAC over counter type DAC?
 - (b) Define the resolution of DAC. A 6 bit DAC has a step size of 50 mV. Determine the full scale output voltage and resolution.

6 + (2 + 4) = 12

- 9. Write short notes on any *three* of the followings:
 - (i) Look-Ahead-Carry Adder
 - (ii) Synchronous Counter
 - (iii) Combinational Logic Circuit
 - (iv) Latch and Flip-Flop
 - (v) Two input TTL NAND gate

(4 + 4 + 4) = 12

Department & Section	Submission Link
ECE Sec A	https://classroom.google.com/c/Mjk50DAxMzkyNTA3/a/Mzc0MTI1MzQ10TE5/details
ECE Sec B	https://classroom.google.com/w/MzQyNjA0Mzk4MDIw/tc/Mzc0Mjk30DE00TI2
ECE Sec C	https://classroom.google.com/w/MzEyMzk4NTM1NDA0/tc/Mzc0MTM4MTQwMjQ3
BACKLOG	https://classroom.google.com/c/Mzc0Mjk4NzQ3MjE0?cjc=chbaw3g